Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико-технологический университет имени Д.И. Менделеева»

На правах рукописи

HV/

Голубев Артем Андреевич

Новые УФ-отверждаемые алкидно-силоксановые пленкообразующие материалы

1.4.7. Высокомолекулярные соединения

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени

кандидата химических наук

Москва - 2025

Работа выполнена на кафедре химической технологии полимерных композиционных лакокрасочных материалов и покрытий в федеральном государственном бюджетном образовательном учреждении высшего образования «Российский химико-технологический университет имени Д. И. Менделеева».

- Научный руководитель: Солдатов Михаил Александрович, кандидат химических наук, доцент кафедры химической технологии полимерных композиционных лакокрасочных материалов и покрытий федерального государственного бюджетного образовательного учреждения высшего образования «Российский химико-технологический университет имени Д.И. Менделеева»
- Официальные оппоненты: Борщев Олег Валентинович, доктор химических наук, ведущий научный сотрудник, заведующий Лабораторией функциональных материалов для органической электроники и фотоники Федерального государственного бюджетного учреждения науки Институт Синтетических Полимерных Материалов им. Н.С. Ениколопова Российской академии наук Темников Максим Николаевич, кандидат химических наук, старший научный сотрудник лаборатории Кремнийорганических соединений № 304 Федерального государственного бюджетного учреждения науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук Федеральное государственное бюджетное образовательное Ведущая организация: учреждение высшего образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова"

Защита состоится 11 сентября 2025 года в 16:00 часов на заседании диссертационного совета РХТУ.2.6.05 федерального государственного бюджетного образовательного учреждения высшего образования «Российский химико-технологический университет имени Д.И. Менделеева» (125047 г. Москва, Миусская пл., 9), в конференц-зале (ауд. 443).

С диссертацией можно ознакомиться в Информационно-библиотечном центре РХТУ им. Д.И. Менделеева федерального государственного бюджетного образовательного учреждения высшего образования «Российский химико-технологический университет имени Д.И. Менделеева» и на сайте <u>https://www.muctr.ru/university/departments/ods/inhouse/inhouse_announcements/</u>

Автореферат разослан «____» ____ 2025 г.

Учёный секретарь диссертационного совета РХТУ.2.6.05 доктор химических наук, доцент

Ю.В. Биличенко

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

<u>Актуальность темы диссертационного исследования.</u> Актуальность гибридных полимеров сегодня связана с их уникальными свойствами, широким спектром применения и потенциалом для решения современных технологических и экологических задач. Развитие в области гибридных полимеров продолжает стимулировать интеграцию их в различные отрасли, делая их ключевым элементом будущего материаловедения и химической промышленности.

Алкидно-силоксановые олигомеры и полимеры относят к классу гибридных систем, где в качестве органической составляющей выступает структура алкидного олигомера, а в качестве неорганической составляющей полиорганосилоксан (-Si-O-Si- связь). На сегодняшний день опубликовано значительное количество исследований, посвященных разработке алкидносилоксановых пленкообразующих материалов, используемых в технологии органических покрытий. Однако, несмотря на достигнутые успехи, развитие гибридных пленкообразующих систем остается перспективным направлением благодаря внедрению новых химических реакций и инновационных методов синтеза, что открывает широкие возможности для разработки материалов с улучшенными свойствами и расширением областей их применения.

Олним ключевых факторов актуальности ИЗ темы исследования является энергоэффективность фотохимического инициирования реакции отверждения. УФ-отверждение происходит значительно быстрее, чем традиционные методы отверждения, что позволяет сократить время производства и снизить энергозатраты. Кроме того, в работе используется фотоинициируемая тиол-еновая «клик»-реакция, которая является эффективной альтернативой классической полимеризации винильных соединений. Следует также отметить, что существующие научные разработки создают предпосылки для синтеза гибридных алкидносилоксановых покрытий посредством реакции гидротиолирования. В литературе описаны получения гибридных покрытий методики на основе растительных масел И кремнийорганических соединений с использованием фотоиницируемой тиол-еновой «клик»реакции. Кроме того, значительный интерес представляют полимераналогичные превращения с участием алкидных олигомеров, содержащих двойные связи, и тиолсодержащих соединений.

Также в работе представлены результаты исследования водоэмульсионного материала на основе УФ-отверждаемой алкидно-силоксановой композиции. На сегодняшний день в мире закрепилась тенденция, связанная с переходом от органорастворимых пленкообразующих материалов к экологически чистым водным системам. Разработка водоэмульсионного материала на основе алкидно-силоксановой композиции позволит отказаться от токсичных органических растворителей, что также подчеркивает актуальность темы исследования. К тому же разработка УФ-отверждаемых материалов требует междисциплинарного подхода, включающего химию и физику полимеров, материаловедение и технологии нанесения покрытий. Это способствует

активному развитию научных исследований и создает предпосылки для успешного внедрения новых знаний в современные технологические процессы.

<u>Целью диссертационной работы</u> является разработка и комплексное исследование новых гибридных алкидно-силоксановых покрытий, полученных методом фотоинициируемой тиол-еновой «клик»-реакции на основе УФ-отверждаемых композиций различного состава. Для достижения поставленной цели решались следующие задачи:

– синтез и характеристика олигомеров для получения УФ-отверждаемых пленкообразующих материалов;

- получение УФ-отверждаемых алкидно-силоксановых пленкообразующих материалов;

 – разработка методики получения стабильных водных эмульсий на основе алкидносилоксановой УФ-отверждаемой композиции;

 исследование закономерностей процесса отверждения алкидно-силоксановых материалов;

 установление корреляционных зависимостей между структурно-химическими характеристиками пленкообразующих материалов и функциональными свойствами гибридных алкидно-силоксановых покрытий.

Научная новизна:

 Впервые получены гибридные алкидно-силоксановые покрытия с применением тиол-еновой клик-реакции;

 установлены оптимальные условия получения водоэмульсионного материала на основе УФ-отверждаемой алкидно-силоксановой композиции;

 впервые установлены кинетические параметры и диффузионно-транспортные характеристики в процессе отверждения алкидно-силоксановых композиций;

– установлено влияния соотношения компонентов УФ-отверждаемых алкидносилоксановых пленкообразующих материалов на свойства гибридных покрытий.

Теоретическая и практическая значимость результатов диссертации обуславливается установлением кинетических и диффузионных закономерностей процесса фотоотверждения алкидно-силоксановых систем путем тиол-еновой «клик»-реакции, что вносит вклад в развитие фундаментальных представлений о структурообразовании олигомерных продуктов в процессе формирования трехмерносшитой сетки химических связей. Разработаны теоретические основы управления структурой и свойствами покрытий за счет варьирования состава олигомерных прекурсоров. Расширены научные знания в области химии гибридных материалов, в частности – о взаимосвязи между строением олигомеров, условиями их сшивания и финальными характеристиками покрытий. Разработана ресурсосберегающая технология получения экологичных гибридных покрытий с контролируемыми свойствами, основанная на энергоэффективном процессе УФотверждения. Предложены способы получения водных эмульсий для покрытий, сочетающие преимущества алкидных и силоксановых компонентов. Применение тиол-еновой химии к алкидно-силоксановым системам в условиях фотоотверждения открывает новые возможности для создания материалов с заданными эксплуатационными характеристиками.

<u>Методы исследования.</u> В работе использованы следующие основные методы исследования: Спектроскопия ЯМР на ядрах ¹H, ¹³C, ИК-Фурье спектроскопия, ГПХ, ДСК, ТГА, оптическая интерферометрия, СЭМ с EDX, вискозиметрические исследования, динамическое и электрофоретическое рассеяния света, фотометрические измерения, потенциодинамические исследования коррозионной стойкости, а также стандартизированные методики исследования адгезионных покрытий.

Положения, выносимые на защиту:

– Синтез и характеристика олигомеров для получения УФ-отверждаемых алкидносилоксановых пленкообразующих материалов;

- Исследования процессов отверждения алкидно-силоксановых композиций;

– Термические, гидрофобные, физико-механические и защитные свойства гибридных алкидно-силоксановых покрытий.

<u>Степень достоверности результатов.</u> Достоверность результатов подтверждена современными физико-химическими методами анализа, включая ИК- и ЯМР-спектроскопию, гель-проникающую хроматографию и элементный анализ. Свойства композиций и покрытий исследованы комплексом инструментальных методов с высокой воспроизводимостью результатов, подтвержденной статистической обработкой данных и их соответствием теоретическим предпосылкам.

Аппробация работы. Результаты диссертации представлены на международных и всероссийских конференциях, в том числе на: Девятой Всероссийской Каргинской конференции «Полимеры – 2024» (г. Москва, 2024 г.); XX Международной конференции по химии и физикохимии олигомеров (г. Самара, 2024 г.); IV Всероссийской конференции (с международным участием) «Актуальные проблемы науки о полимерах» (г. Казань, 2024 г.); XVI Андриановской конференции «Кремнийорганические соединения: синтез, свойства, применение» к 120-летию академика К.А. Андрианова (г. Москва, 2024 г.); XXVII Всероссийской конференции молодых учёных-химиков (с международным участием) (г. Нижний Новгород, 2024 г.); Международном молодежном научном форуме «ЛОМОНОСОВ-2023» (г. Москва, 2023 г.); XIX Международной научно-практической конференции (г. Нальчик, 2023 г.); VIII Международной конференции

«Супрамолекулярные системы на поверхности раздела – 2023» (п. Агой, 2023 г.); Х Международной конференции по физической химии краун-соединений, порфиринов и фталоцианинов (г. Туапсе, 2024 г.).

Публикации. По материалам диссертации опубликованы 2 научных статьи, из них 2 рецензируемых в системах Web of Science и Scopus, отдельные разделы диссертации представлены на 10 научных конференциях, в том числе с международным участием, по которым опубликованы сборники тезисов.

<u>Личный вклад автора.</u> Автор лично разработал концепцию исследования, выполнил синтез олигомерных соединений, получил алкидно-силоксановые композиции, провел комплексное изучение свойств гибридных покрытий, а также осуществил обработку и анализ всех полученных экспериментальных данных.

<u>Финансовая поддержка.</u> Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках государственного задания (проект № FSSM-2024-0009 «Фосфор и кремний содержащие олигомеры и полимеры, в качестве компонентов полимерных композиционных материалов»).

<u>Объем и структура диссертации.</u> Диссертация состоит из введения, обзора литературы, экспериментальной части, обсуждения результатов, заключения, списка сокращений и условных обозначений, списка литературы. Общий объем работы 172 страницы, включая 91 рисунок, 15 таблиц, библиографию из 208 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Введение содержит обоснование актуальности проведенного исследования, четкое определение его целей и задач, а также описание научной новизны, теоретической и практической значимости полученных результатов.

Первая глава представляет систематизированный анализ современных исследований в области синтеза и модификации алкидных и кремнийорганических олигомеров, включая применение тиол-еновой «клик»-реакции и изучение физико-механических характеристик получаемых покрытий.

Вторая глава описывает экспериментальные методы синтеза олигомерных соединений, методики исследования полученных УФ-отверждаемых алкидно-силоксановых пленкообразующих материалов и гибридных покрытий на их основе.

Третья глава посвящена исследованию кинетики отверждения алкидно-силоксановых систем, включая анализ диффузионных процессов, разработке методов создания водоэмульсионных материалов и комплексному изучению физико-механических характеристик гибридных покрытий.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

1 Синтез и характеристика олигомеров

Для получения алкидно-силоксановых УФ-отверждаемых пленкообразующих материалов были синтезированы:

Alk – алкидный олигомер получали жирнокислотным методом на основе пентаэритрита, фталевого ангидрида и жирных кислот таллового масла (ЖКТМ) – рисунок 1.

Рисунок 1 – Схема синтеза пентафталевого алкидного олигомера (Alk)

OOS – меркапто-олигоорганосилоксан синтезировали методом ацидогидролитической поликонденсации в присутсвии ацетилхлорида из 3-меркаптопропилтриметоксисилана и гексаметилдисилоксана – рисунок 2.

Рисунок 2 – Схема синтеза меркапто-олигоорганосилоксана (OOS)

НА – гиперразветвленный алкидный олигомер, полученный модификацией ЖКТМ синтезированного гиперразветвленного полиэфира на основе пентаэритрита и 2,2бис(гидроксиметил)пропионовой кислоты (Б-МПА) – рисунок 3.

Синтезированнные олигомеры охарактеризованы методами ¹H, ¹³C ЯМР-, ИКспектроскопии, молекулярно-массовые характеристики определены методом гель-проникающей хроматографии.

Рисунок 3 – Схема получения гиперразветвленного алкида (НА)

2 Получение композиций на основе синтезированных олигомеров

Получение пленкообразующих материалов осуществляли двумя методами: с использованием органического растворителя и в безрастворительной системе. В первом случае синтезированные олигомеры (Alk с OOS) смешивали в заданных пропорциях вводили фотоинициатор и растворяли в органическом растворителе. Во втором варианте жидкие олигомеры (HA с OOS) смешивали между собой в заданных соотношениях непосредственно без применения растворителя, добавляя к полученной смеси фотоинициатор. Составы разработанных УФ-отверждаемых алкидно-силоксановых композиций приведены в таблице 1.

Компориция	Содержание, масс. %						
Композиция	Alk	OOS	HA	ТГМ-3	Толуол	ФИ	
OOS 10	73,2	8,1	-	-	16,3	2,4	
OOS 30	56,9	24,4	-	-	16,3	2,4	
OOS 50	40,7	40,7	-	-	16,3	2,4	
HAS-10	-	9,7	87,4	-	-	2,9	
HAS-30	-	29,1	68,0	-	-	2,9	
HAS-50	-	48,5	48,5	-	-	2,9	
HAST	-	37,6	37,6	22,6	-	2,3	
Alk(p)*	60,0	-	-	-	40,0	-	
$HA(p)^*$	60,0	-	-	-	40,0	-	

Таблица 1 – Составы УФ-отверждаемых алкидно-силоксановых композиций и алкидных лаков

– дополнительно вводили сиккатив, после приготовления раствора

6

Приготовление композиций осуществлялось путем смешения компонентов в заданных пропорциях. На первом этапе смешивали синтезированные олигомеры, после чего добавляли фотоинициатор (ФИ) и перемешивали состав до полного растворения последнего. Затем вводили вспомогательные компоненты: растворитель (толуол) и разбавитель (ТГМ-3) для снижения вязкости, а также сиккатив (октоаты кобальта и марганца) для лаковых композиций на основе чистых алкидных олигомеров.

Композиции на водной основе получали тремя способами: прямое эмульгирование без нейтрализующего агента, прямое эмульгирование с нейтрализующим агентом (триэтиламин – Et₃N) и метод фазовой инверсии. В таблице 2 представлены составы получаемых эмульсий. Где ОП-7 – неионогенное поверхностно-активное вещество (ПАВ), ЛС – лаурил сульфат натрия, ПВС – поливиниловый спирт и Et₃N – триэтиламин.

Эмульсия	ОП-7,	ЛС,	1% раствор	Alk,	OOS,	Et ₃ N, масс. %
	масс. %	масс. %	ПВС, масс. %	масс. %	масс. %	
AS-1	1,23	1,23	50,23	23,28	23,28	0,76
AS-2	1,25	1,25	50,00	23,75	23,75	-
AS-3.1-3.3	1,25	1,25	50,00	23,75	23,75	-

Таблица 2 – Составы водоэмульсионных алкидно-силоксановых материалов

Гранулометрический состав эмульсий определяли методом динамического светорассеяния (рисунок 4). На основании этих данных выбрали оптимальную технологию получения УФотверждаемой водной алкидно-силоксановой композиции AS-3 (рисунок 4 в).

Рисунок 4 – Распределение частиц по размерам для различных технологий получения водоэмульсионных материалов; а – AS-1(прямое эмульгирование с нейтрализацией алкидного олигомера); б – AS-2 (инверсия фаз); в – AS-3 (прямое эмульгирование).

Оптимальная температура эмульгирования, определенная по распределению частиц, составила 60 °C (рисунок 5). Все дальнейшие исследования проводили на эмульсии AS-3.3, полученной при этой температуре.

Рисунок 5 – Сравнение распределения частиц по размерам в зависимости от температуры эмульгирования

Эмульсия AS-3.3 демонстрирует агрегативную и седиментационную устойчивость в течение 3 месяцев, но чувствительна к температурным перепадам, что подтверждается стабильностью её гранулометрического состава.

3 Отверждение алкидно-силоксановых пленкообразующих материалов

3.1 Исследование процессов отверждения: ИК-спектроскопия и реокинетика

Отверждение алкидно-силоксановых композиций происходит через тиол-еновую «клик»реакцию между двойными связями алкидного олигомера и тиольными группами OOS. Для наглядности реакцию схематично изобразили как взаимодействие эфиров жирных кислот таллового масла и меркапто-олигоорганосилоксана (рисунок 6). Получение сшитых алкидносилоксановых полимеров проводили под УФ-лампой (λ =395 нм, 600 Вт, 1100 мВт/см²) в течение 0-20 минут при толщине слоя 30 мкм. Ход реакции контролировали по уменьшению полосы поглощения при 3007-3010 см⁻¹, соответствующей двойной связи (*цис- H-C*=CH-) в жирнокислотных остатках (рисунок 7). Спектры были деконволюированны с выделением 3–4 гауссовых компонент, что позволило получить кинетические кривые. Затем по этим данным были построены зависимости степени конверсии от времени УФ-воздействия.

Анализ экспериментальных данных показал, что полная конверсия достигается уже через 15 минут воздействия УФ-излучения. Этот результат свидетельствует о высокой скорости отверждения данных материалов по сравнению с чистыми алкидными олигомерами. Повышение содержания OOS в композициях способствует увеличению скорости реакции отверждения. Это согласуется с законом действующих масс, согласно которому скорость химической реакции напрямую зависит от концентрации реагирующих веществ. В исследуемых системах рост концентрации тиол-содержащего компонента повышает вероятность эффективных молекулярных столкновений, что ускоряет процесс отверждения.

Рисунок 6 – Реакция получения алкидно-силоксанового полимера сшитой структуры

Рисунок 7 – ИК-спектры исследованных покрытий OOS-50 при разном времени облучения (a) и зависимость степени конверсии от времени облучения (б)

Аналогичные результаты исследования степени конверсии и скорости тиол-енового отверждения были получены для композиций на основе гиперразветвленного алкидного олигомера – рисунок 8.

Как и в случае композиций на основе пентафталевого алкидного олигомера, увеличение содержания ООЅ в системах НАЅ приводит к росту скорости реакции отверждения. При этом для композиций HAS-30,50 скорость реакции оказывается в 2-2,5 раза выше по сравнению с композициями OOS-30,50.

Рисунок 8 – Зависимость конверсии (а) и скорости отверждения (б) от времени для HAS

Введение ТГМ-3 в композицию на основе гиперразветвленного алкида приводит к увеличению скорости отверждения. Анализ кинетических кривых (рисунок 9) свидетельствует о более высокой реакционной способности двойных связей ТГМ-3 в процессе отверждения.

Рисунок 9 – Исследование кинетики отвержения композиции HAST по двойным связям в ТГМ-3 (а) и HA (б)

Таким образом можно предположить механизм отверждения композиции HAST, на начальном этапе более реакционноспособные метакриловые группы TГМ-3 реагируют с

меркапто-олигоорганосилоксаном и последовательно-параллельно происходит реакция гидротиолирования с НА формируя единую сшитую сетку химических связей – рисунок 10.

Рисунок 10 – Формирование 3D сетки химических связей из HAST

Для анализа реокинетики отверждения алкидно-силоксановых композиций использовали вискозиметр HAAKE RheoStress 1 с УФ-приставкой (лазер 405 нм, 20 мВт, 1,723 мВт/см²). Осцилляционные испытания проводили при 25 °С после 1-минутной стабилизации. На рисунке 11 представлены типичные зависимости комплексной вязкости, модуля накопления и модуля потерь для композиции HAS-50. Аналогичные вязкостные кривые были получены для всех исследуемых систем, где наблюдается быстрый рост вязкости для всех композиций с последующим гелеобразованием (кроме OOS-10)

Рисунок 11 – Зависимость комплексной вязкости (|η*|), модуля накопления (G') и модуля потерь (G") от времени отверждения для системы HAS-50

Вблизи точки гелеобразования зависимость логарифма вязкости от времени отклоняется от линейного характера, демонстрируя более интенсивное увеличение вязкости. При линеаризации зависимостей для расчета констант скорости нарастания вязкости (k_η) конечный участок кривой, соответствующий этому отклонению, не учитывался. Время гелеобразования (τ_{gel}) при динамической нагрузке определяли точкой пересечения кривых G'(t) и G''(t), известной как кроссовер. На основе анализа этих данных были определены значения k_η и τ_{gel} для всех исследуемых систем (таблица 3).

Композиция	$ au_{gel}, c$	k_{η}, c^{-1}
OOS-10	>7200	8,80.10-5
OOS-30	2531	3,08.10-4
OOS-50	2785	3,14.10-4
HAS-10	4104	7,25.10-5
HAS-30	2732	1,41.10-4
HAS-50	2007	2,15.10-4
HAST	1628	1,08.10-3

Таблица 3 – Значения k_η и значения τ_{gel} для исследуемых композиций

Анализ данных показывает, что для всех исследуемых композиций наблюдается общая зависимость: с увеличением содержания реакционноспособных групп (-*SH*) время гелеобразования уменьшается, а значение k_{η} возрастает, что свидетельствует об ускорении процесса структурообразования при отверждении. Композиция HAST характеризуется минимальным временем гелеобразования (1628 с) и максимальной значением $k_{\eta} = 1,08 \cdot 10^{-3} \text{ c}^{-1}$, что свидетельствует о высокой реакционной способности метакриловых групп TГМ-3 по сравнению с двойными связями HA. Несмотря на различия в параметрах экспериментов, которые не позволяют напрямую сравнивать данные ИК-спектроскопии и реокинетики, оба метода демонстрируют согласованные результаты. Они подтверждают, что концентрация олигомеров существенно влияет на скорость образования трёхмерной сетки химических связей в алкидно-силоксановом полимере.

3.2 Исследование диффузионно-транспортных характеристик в процессе отверждения

Для определения диффузионной подвижности компонентов в ходе образования трехмерно сшитой структуры были исследованы частично отвержденные композиции на основе HAS-50 и OOS-50 (аддукты) на различных степенях конверсии, используемые в качестве матрицы, и исходные олигомеры OOS, Alk и HA, выступающие в роли диффузантов. Исследования модельной ситемы HAS-50 – OOS проводились методом оптической микроинтерферометрии в изотермических условиях (T = 25 °C) с использованием диффузиометра OДА-2.

Видно, что при малых временах облучения HAS-50 (Рисунок 12, 60 с, содержание гельфракции – 32 %), в системе наблюдается плавное искривление интерференционных полос по обе стороны от границы соприкосновения компонентов, при этом граница раздела полностью исчезает спустя 25 минут, что свидетельствует о неограниченной диффузионной подвижности как OOS, так и аддукта, а также их полной совместимости. При временах облучения более 300 с в HAS-50 формируется трехмерная сетчатая структура, поэтому на интерферограммах (Рисунок 12, 600 с, содержание гель-фракции – 91 %) наблюдается искривление полос только с одной стороны от границы раздела, что указывает на однонаправленную диффузию OOS в матрицу HAS-50 и ограниченное набухание последней.

Рисунок 12 – Интерферограммы зоны взаимодиффузии полученные в процессе массопереноса в системах HAS-50 – OOS за время наблюдения: а) 0 мин. (25 °C); б) 1 мин. (25 °C); в) 25 мин. (25 °C)

Поскольку на поздних стадиях отверждения, при высоких степенях конверсии или значительном содержании гель-фракции, реакция начинает лимитироваться диффузионной подвижностью компонентов системы, необходимо учитывать характер и динамику изменения диффузионно-транспортных свойств компонентов, что, в конечном счете, будет иметь ключевое значение для описания кинетических закономерностей реакции отверждения. Таким образом, с удалось увеличением времени облучения нам детально пронаблюдать эволюцию реакционноспособной смесевой композиции в процессе структурных изменений, качественно и количественно охарактеризовать подвижность компонентов. На этапе I (Рисунок 13), при небольших приростах степени конверсии, снижение коэффициентов трансляционной подвижности компонентов происходит за счет увеличения молекулярной массы макромолекул матрицы, и, как следствие, увеличения ее вязкости. На этапе II, когда в системе начинает формироваться непрерывная сетка химических связей, наблюдается диффузионное фракционирование матрицы на гель-микрогелики-золь, а ее подвижность, фактически обеспеченная наличием золь-фракции, постепенно падает. Наконец на этапе III диффузионный

процессы сводятся к эффекту набухания частично отвержденной, но уже находящейся в состоянии 3D сетки химических связей, матрицы.

Аналогичным образом были изучены диффузионно-транспортные характеристики модельных систем ООS-50 – ООS, HAS-50 – HA, OOS-50 – Alk.

Рисунок 13 – Зависимости lg D_v от времени отверждения (а) и содержания гель-фракции (б). 1 – скорость диффузии ООЅ в HAS-50, 2 – скорость диффузии золь-фракции HAS-50 в ООЅ.

4 Свойства сшитых алкидно-силоксановых полимеров

4.1 Термические свойства гибридных алкидно-силоксановых покрытий

ТГА-анализ показал, что термическая деградация сшитых полимеров протекает в две стадии для «HAS»-композиций и в три стадии для «OOS»-композиций. Начальные потери массы (3-12%) обусловлены испарением остаточного растворителя и воды вследствие поликонденсации, тогда как основная деструкция связана с разложением углеводородных цепей алкидного олигомера и кремнийорганического компонента.

Образец	T _{TG5%} , °C	T _{TG15%} , °C	T _{TG50%} , °C	Остаток при 600 °С, масс. %
Alk	244	320	396	4,8
OOS-10	217	319	420	12,2
OOS-30	212	316	428	21,8
OOS-50	203	323	442	28,9
AS-3.3	228	332	427	18,1
OOS	231	306	384	14,6
HA	190	279	355	0,5
HAS-10	217	318	420	9,9
HAS-30	249	321	415	12,9
HAS-50	202	334	438	19,7
HAST	237	340	413	20,1

Таблица 4 – Результаты исследования ТГА

Согласно данным таблицы 4, увеличение содержания ООЅ повышает термическую стойкость покрытий, причем остаток при 600 °С (14,6 масс. % для чистого ООЅ против 4,8 и 0,5 масс. % для Alk и HA соответственно) образуется за счет карбонизации алкидных цепей и деструкции кремнийорганических фрагментов до SiO₂. Примечательно, что покрытия на основе комозиций Alk/HA+OOS с 30 и 50 % содержанием меркапто-олигоорганосилоксана демонстрируют остаток 12,9-28,9 масс. %, что превышает их аддитивные значения. Это объясняется синергетическим эффектом, карбонизация углеводородных фрагментов алкидных олигомеров усиливается под действием адсорбированных или химически связанных кремнийорганических соединений, что приводит к увеличению выхода термостабильного остатка.

4.2 Гидрофобные свойства гибридных алкидно-силоксановых покрытий

Методом краевых углов смачивания поверхностей образцов набором тестовых жидкостей определены поверхностные энергии покрытий (у_s) – таблица 5.

Покрытие	γ_{s}	$\gamma_s{}^D$	$\gamma_s{}^P$	\mathbb{R}^2
Alk	26,1	19,1	7,0	0,91
OOS-10	30,5	24,7	5,8	0,94
OOS-30	31,3	27,4	3,9	0,97
OOS-50	28,9	28,3	0,6	0,95
AS-3.3	24,3	22,0	2,3	0,96
НА	29,9	29,0	0,9	0,94
HAS-10	31,4	30,9	0,5	0,84
HAS-30	29,1	27,4	1,7	0,97
HAS-50	28,8	28,0	0,8	0,95
HAST	24,2	19,6	4,6	0,92

Таблица 5 – Значения поверхностной энергии гибридных покрытий

Для покрытий на основе гиперразветвленного алкида (кроме HAST) дисперсионная составляющая (γ_s^D) достигает ~95 %, причем разница между HA и HAS-серией не превышает 1,6 мДж/м², что указывает на определяющую роль структуры олигомера. Покрытие HAST (24,2 мДж/м²) отличается повышенной полярной составляющей ($\gamma_s^P = 4,6$ мДж/м², 20% от общей энергии) из-за введения ТГМ-3. При увеличении доли ООS в системах на основе Alk наблюдается рост общей поверхностной энергии и её дисперсионной части, в то время как полярная составляющая резко падает – γ_s^P уменьшается вплоть до 12 раз относительного чистого алкидного покрытия. Покрытие из эмульсии AS-3.3 демонстрирует аномально низкую поверхностную

энергию (24,3 мДж/м²) при 4-кратно повышенной полярной составляющей (2,3 мДж/м²) относительно ООЅ-50.

Изотермы сорбции паров воды (Рисунок 14) показали схожий характер для всех покрытий, соответствующий III типу по классификации Роджерса, что характеризует их гидрофобные свойства. Анализ сорбционных свойств покрытий выявил следующие закономерности: покрытие OOS-50 демонстрирует максимальную гидрофобность (сорбция ~2 % при 90-100 % влажности), тогда как Alk, OOS-10, OOS-30 и AS-3.3 относятся к слабосорбирующим полимерам (2,7-4,2 %).

Рисунок 14 – Изотермы сорбции воды исследуемых покрытий на основе Alk (а) и НА (б)

С увеличением содержания ООЅ в пентафталевом алкиде наблюдается последовательное снижение сорбции воды (4,2 $\% \rightarrow 3,8 \% \rightarrow 2,8 \% \rightarrow 2,1 \%$), обусловленное химической природой полиорганосилоксанов. Покрытие AS-3.3 (2,7 %) проявляет повышенную сорбцию относительно OOS-50 из-за присутствия ПАВ и ПВС. Гиперразветвленный алкид НА (~2 %) существенно гидрофобнее Alk (4,2 %) благодаря экранированию полярного ядра неполярными алифатическими заместителями, а HAS-серия (1,9-2,2 %) показывает стабильно низкую сорбцию независимо от содержания OOS, подтверждая определяющую роль гиперразветвленной структуры.

В таблице 6 представлены коэффициенты диффузии паров воды (D) для различных покрытий при температуре 25 °C и при относительной влажности 50-90 %. Анализ диффузионных свойств выявил ключевые закономерности: в композициях на основе Alk увеличение содержания OOS снижает коэффициент диффузии, при этом системы OOS-50 и AS-3.3 демонстрируют одинаковые значения D, что свидетельствует о влиянии ПАВ исключительно на сорбционную емкость без изменения механизма и скорости диффузии.

Для HA/HAS-систем минимальный D (3,95·10⁻⁹ см²/с) зафиксирован у HAS-10, тогда как HAST показывает аномально высокий показатель (1,61·10⁻⁸ см²/с) благодаря полярным эфирным группам ТГМ-3, способным к образованию водородных связей. Наблюдается принципиальное

различие в поведении сшитых полимеров: для OOS-10,30,50/AS-3.3 увеличение степени сшивки приводит к ожидаемому снижению D, тогда как для HAS-10,30,50 плотность сшивки не оказывает значимого влияния на диффузионные характеристики.

Покрытие	D·10 ⁹ , см ² /с	$\Delta \cdot 10^{10}$, cm ² /c	Влажность, %
Alk	8,69	±6,57	
OOS-10	8,57	$\pm 5,76$	
OOS-30	8,41	±6,97	
OOS-50	8,35	±4,20	
AS-3.3	8,35	±3,99	50.00
НА	5,46	±7,77	50-90
HAS-10	3,95	$\pm 5,65$	
HAS-30	4,99	±8,64	
HAS-50	5,19	±9,73	
HAST	16,10	±32,00	

Таблица 6 – Коэффициенты диффузии паров воды (D) в покрытиях при 25 °C

4.3 Защитные свойства гибридных алкидно-силоксановых покрытий

Исследование коррозионной стойкости методом потенциодинамической поляризации в 3% NaCl показало, что все гибридные покрытия обеспечивают значительное снижение плотности тока коррозии (до 33-93 мкА/см² против 199 мкА/см² для незащищенной стали), проявляя смешанный ингибирующий эффект ($\Delta E_{corr} < 55$ мВ) – таблица 7.

Образец	E_{corr} , м B	j_{corr} , мкА/см ²	ГПК, мм/год	βа, В/дек	βс, В/дек	IE, %
Сталь	-360,69	199,76	2,32	0,11	0,49	0
Alk	-364,63	47,61	0,55	0,10	0,90	76,2
OOS-10	-357,63	41,61	0,51	0,10	0,46	79,2
OOS-30	-339,87	39,90	0,47	0,09	0,45	80,0
OOS-50	-337,28	39,58	0,46	0,09	0,40	80,2
AS-3.3	-340,56	33,07	0,38	0,11	0,41	83,4
Сталь	-360,69	199,76	2,32	0,11	0,49	0
HA	-379,89	92,99	1,08	0,11	0,43	53,5
HAS-10	-368,41	77,61	0,85	0,10	0,37	61,1
HAS-30	-344,84	57,82	0,64	0,09	0,59	71,1
HAS-50	-340,51	53,70	0,62	0,09	0,60	73,1
HAST	-415,14	41,54	0,89	0,07	0,20	79,2

Таблица 7 – Электрохимические параметры образцов

Наибольшая эффективность анодного ингибирования отмечена для OOS/HAS-систем благодаря присутствию тиоэфирных связей, при этом увеличение содержания OOS в комозициях на основе пентафталевого алкидного олигомера снижает скорость коррозии с разницей ГПК 0,09 мм/год между OOS-50 и Alk. Покрытия серии «HAS» демонстрируют более выраженную защиту (HA 1,08 мм/год → HAS-50 0,62 мм/год), а покрытие HAST (-415,14 мВ) преимущественно подавляет катодный процесс за счет образования защитного слоя на поверхности металла. Полученные данные подтверждают, что модификация алкидных матриц кремнийорганическими соединениями улучшает коррозионную стойкость покрытий.

ЗАКЛЮЧЕНИЕ

В результате проведенных в работе исследований можно сформулировать следующие выводы:

1. Разработаны новые УФ-отверждаемые пленкообразующие материалы на основе синтезированных алкидных олигомеров (Alk, HA) и меркапто-олигоорганосилоксана (OOS), способных отверждаться под действием фотоиницируемой тиол-еновой «клик»-реакции.

2. Установлено, что скорость реакции отверждения возрастает пропорционально увеличению массовой доли меркапто-олигоорганосилоксана в композиции. Наблюдаемая зависимость соответствует закону действующих масс, описывающему прямую корреляцию между скоростью химической реакции и концентрацией реагентов.

3. Установлена эффективность применения триэтиленгликольдиметакрилата (ТГМ-3) в качестве реакционноспособного разбавителя для УФ-отверждаемых алкидно-силоксановых композиций на основе гиперразветвленного алкидного олигомера. Введение ТГМ-3 приводит к двум значимым эффектам: снижению вязкости системы и ускорению процесса фотоотверждения.

4. Методом оптической интерферометрии установлены диффузионно-транспортные характеристики модельных алкидно-силоксановых композиций в процессе отверждения. Экспериментально определенные коэффициенты диффузии свидетельствуют, что при достижении гель-фракции >30 % кинетика формирования трёхмерной сетки химических связей, вероятно, становится диффузионно-контролируемой. Ограничение скорости структурообразования обусловлено сравнительно низкой подвижностью алкидных олигомеров, чьи коэффициенты диффузии на порядок ниже, чем у олигоорганосилоксанового компонента.

5. Показа возможность получения стабильной в течение 3 месяцев водоэмульсионной алкидно-силоксановой композиции прямым эмульгированием с использованием коммерчески доступных ПАВ и вспомогательных веществ. Установлено, что данный подход не приводит к значительному ухудшению физико-механических и эксплуатационных характеристик формируемых покрытий.

6. Установлено, что увеличение содержания олигоорганосилоксанового компонента в композиции приводит к повышению плотности пространственной сшивки полимерной матрицы, что сопровождается улучшением термостойкости покрытий и повышением их коррозионной стойкости. Наблюдаемые эффекты обусловлены увеличением доли термостабильных силоксановых связей и формированием более плотной трёхмерной сетки, что подтверждается данными ТГА и ДСК, показывающими сдвиг температуры термического разложения на 10-50 °C относительно алкидных покрытий.

7. Установлено, что увеличение содержания олигоорганосилоксанового компонента в композициях на основе пентафталевого алкидного олигомера вызывает значительное снижение полярной составляющей поверхностной энергии покрытий с 5,8 до 0,6 мДж/м² и незначительное уменьшение коэффициента диффузии водяного пара с 8,57×10⁻⁹ до 8,35×10⁻⁹ см²/с. Наблюдаемое резкое снижение полярности при сохранении диффузионных характеристик свидетельствует о том, что гидрофобные свойства сшитых полимеров обусловлены преимущественно кремнийорганическими фрагментами в трехмерной сетке химических связей, что приводит к выраженному уменьшению полярной составляющей поверхностной энергии без существенного изменения барьерных свойств материала.

8. Результаты исследований покрытий на основе гиперразветвленного алкидного олигомера (НА) демонстрируют, что гидрофобность и барьерные свойства сшитых полимеров (НАS) определяются преимущественно структурными характеристиками НА и природой ТГМ-3, тогда как содержание ООS не оказывает значимого влияния на эти параметры.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ АВТОРОМ:

Публикации в изданиях, индексируемых в международных базах данных:

1. Golubev A.A. Preparation and study of novel UV-curable alkyd-siloxane coating materials / A. A. Golubev, K. S. Baranova, D. A. Bazhanov [et al.] // Journal of Applied Polymer Science. – 2024. – Vol. 141, No. 33. – P. e55838. (Web of Science, Scopus)

2. Golubev A.A. Preparation and characterization of UV-curable water-based alkydsiloxane composition / **A. A. Golubev**, K. S. Baranova, A. A. Galkin, M. A. Soldatov, A. A. Shcherbina // Journal of Coatings Technology and Research. – 2025. – Vol. 22. – P. 1185-1205. DOI:10.1007/s11998-024-01058-4. (Web of Science, Scopus)

Публикации в сборниках материалов и тезисов научных конференций:

1. Баранова К.С. Синтез кремнийорганического олигомера с меркаптановыми функциональными группами для отверждения алкидных олигомеров / К. С. Баранова, А. А. Голубев // Материалы Международного молодежного научного форума «ЛОМОНОСОВ-2023» / Отв. ред. И.А. Алешковский, А.В. Андриянов, Е.А. Антипов, Е.И. Зимакова [Электронный ресурс] – М.: МАКС Пресс, 2023. ISBN 978-5-317-06952-0.

2. Баранова K.C. Получение УФ-отверждаемых алкидно-силоксановых пленкообразующих материалов / К. С. Баранова, А. А. Голубев, М. А. Солдатов // Новые полимерные композиционные материалы. Микитаевские чтения: Материалы XIX Международной научно-практической конференции, Нальчик, 03 – 08 июля 2023 года. – Нальчик: Принт Центр, 2023. – С. 46.

Golubev A. Preparation and study of novel uv-curable alkyd-siloxane coating materials /
A. Golubev, K. Baranova, D. Bazhanov [et al.] // Innovation & Future of Silsesquioxane Chemistry. –
Shandong University Jinan, P. R. China: 2024. – P. 37.

4. Баранова К. С. Синтез меркаптопропилсил-сесквиоксановых олигомеров для отверждения и модификации полимерных пленкообразующих материалов / К. С. Баранова, А. А. Голубев, М. А. Солдатов // Девятая всероссийская Каргинская конференция «Полимеры – 2024». Сборник тезисов. – Москва, 2024. – С. 287.

5. Баранова К. С. Исследование влияния меркаптопропилсилсесквиоксановых олигомеров на свойства лаковых покрытий на основе модифицированных олигоэфиров / К. С. Баранова, А. А. Голубев, М. А. Солдатов // Abstracts book XVI Andrianov conference "Organosilicon compounds: synthesis, properties, applications" to the 120th anniversary of Academican K. A. Andrianov – Moscow: INEOS RAS, 2024. – P. 48.

6. Баранова К. С. Синтез меркаптопропилсил-сесквиоксановых олигомеров для отверждения и модификации полимерных плёнкобразующих материалов / К. С. Баранова, А. А. Голубев, М. А. Солдатова // ХХVII Всероссийская конференция молодых учёных-химиков (с международным участием): тезисы докладов, Нижний Новгород, 16 – 18 апреля 2024 года. – Нижний Новгород: Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Нижегородский государственный университет им. Н.И. Лобачевского», 2024. – С. 269.

7. Баранова К. С. Получение и исследование новых УΦ-отверждаемых алкидносилоксановых пленкообразующих материалов / К. С. Баранова, **А. А. Голубев**, М. А. Солдатов // Супрамолекулярные системы на поверхности раздела. Стратегическая сессия по повышению квалификации управленческой команды и профессорско-преподавательского состава Передовой инженерной школы Химического инжиниринга и машиностроения: Сборник тезисов докладов VIII Международной конференции, Туапсе, 25 – 29 сентября 2023 года / Под редакцией О.А. Райтмана, Д.Н. Тюрина. – Москва: Федеральное государственное бюджетное учреждение науки Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук, 2023. – С. 24.

8. Баранова К. С. Синтез меркаптопропилсилсесквиоксановых олигомеров для отверждения и модификации полимерных плёнкообразующих материалов / К. С. Баранова, А. А.

Голубев, М. А. Солдатов // Физическая химия краун-соединений, порфиринов и фталоцианинов: Х Международная конференция, посвященная 300-летию Российской академии наук: сборник тезисов докладов, Туапсе, 23-27 сентября 2024 года. – Москва: Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук, 2024. – С. 34.

9. Голубев А. А. Исследование влияния температуры эмульгирования на гранулометрический состав и Z-потенциал УФ-отверждаемой алкидно-силоксановой композиции на водной основе / А. А. Голубев, А. А. Галкин, А. А. Щербина // Актуальные проблемы науки о полимерах: Материалы IV Всероссийской научной конференции (с международным участием) преподавателей и студентов вузов, Казань, 23 – 26 сентября 2024 года. – Казань: Казанский национальный исследовательский технологический университет, 2024. – С. 536-538.

10. Голубев А.А., Галкин А. А., Щербина А. А. Исследование агрегативной устойчивости УФ-отверждаемой алкидно-силоксановой композиции на водной основе / А. А. Голубев, А. А. Галкин, А. А. Щербина // Олигомеры-2024: сборник трудов XX Международной конференции по химии и физикохимии олигомеров, Самара, 09 – 14 сентября 2024 года. – Черноголовка: ФИЦ проблем химической физики и медицинской химии РАН, 2024. – С. 76.