Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико-технологический университет имени Д.И. Менделеева»

На правах рукописи

Горбунова Екатерина Александровна

Исследование закономерностей образования и структуры

полибензоксазинов

1.4.7. Высокомолекулярные соединения

ДИССЕРТАЦИЯ

на соискание ученой степени

кандидата химических наук

Научный руководитель: к.х.н., доцент Сиротин Игорь Сергеевич

оглавление

ВВЕДЕНИЕ	4
1 ОБЗОР ЛИТЕРАТУРЫ	8
1.1 Номенклатура бензоксазиновых мономеров	8
1.2 Классификация бензоксазиновых мономеров	10
1.3 Синтез бензоксазиновых мономеров	12
1.3.1 Одностадийный синтез бензоксазинов в расплаве	12
1.3.2 Одностадийный синтез бензоксазинов в растворе	13
1.3.3 Многостадийный синтез бензоксазинов	16
1.3.4 Альтернативные способы получения бензоксазинов	17
1.4 Механизм и побочные процессы при синтезе бензоксазиновых мономеров	18
1.5 Полимеризация бензоксазиновых мономеров	24
1.6 Влияние строения бензоксазиновых мономеров на полимеризацию	33
1.6.1 Влияние электроноакцепторных заместителей	34
1.6.2 Влияние электронодонорных заместителей	37
1.7 Термическая деструкция полибензоксазинов	40
1.8 Применение бензоксазиновых мономеров	44
2 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	48
2.1 Исходные реагенты	48
2.2 Методики синтезов бензоксазиновых мономеров	51
2.3 Методы анализа	56
3 ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ	60
3.1 Синтез и химическое строение бензоксазиновых мономеров	62
3.2 Термомеханические характеристики бензоксазиновых мономеров и полимеров	71
3.3 Полимеризация бензоксазинов и химическая структура полибензоксазинов	81
4 ЗАКЛЮЧЕНИЕ	102
СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ	104
СПИСОК ЛИТЕРАТУРЫ	105
ПРИЛОЖЕНИЕ А. ¹ Н и ¹³ С ЯМР спектры основания Шиффа Sh-3,4'-d	123
ПРИЛОЖЕНИЕ Б. ¹ Н и ¹³ С ЯМР спектры восстановленного основания Шиффа М-3,4'-d	124
ПРИЛОЖЕНИЕ В. ¹ Н и ¹³ С ЯМР спектры восстановленного основания Шиффа М-4,4'-d	125
ПРИЛОЖЕНИЕ Г. ¹ Н и ¹³ С ЯМР спектры бензоксазинового мономера Р-3,4'-d	126
ПРИЛОЖЕНИЕ Д. ¹ Н и ¹³ С ЯМР спектры бензоксазинового мономера Р-4,4'-d	127

ПРИЛОЖЕНИЕ Е. ¹ Н и ¹³ С ЯМР спектры бензоксазинового мономера оС-4,4'-d	. 128
ПРИЛОЖЕНИЕ Ж. ¹ Н и ¹³ С ЯМР спектры бензоксазинового мономера pC-4,4'-d	. 129
ПРИЛОЖЕНИЕ И. ¹ Н и ¹³ С ЯМР спектры бензоксазинового мономера 2,4Х-4,4'-d	. 130
ПРИЛОЖЕНИЕ К. ¹ Н и ¹³ С ЯМР спектры бензоксазинового мономера ВА-а	. 131
ПРИЛОЖЕНИЕ Л. ¹ Н ЯМР спектры pC-4,4'-d в процессе отверждения при 180 °С	. 132
ПРИЛОЖЕНИЕ М. ¹³ С ЯМР спектры pC-4,4'-d в процессе отверждения при 180 °С	. 133
ПРИЛОЖЕНИЕ Н. ¹ Н ЯМР спектры ВА-а в процессе отверждения при 180 °С	. 134

введение

Актуальность темы исследования. Бензоксазины представляют собой гетероциклические соединения, способные полимеризоваться с раскрытием цикла с образованием, в зависимости от функциональности, линейных или сетчатых полимеров. Полибензоксазины обладают низкой горючестью, высокой термической и химической стойкостью, высокими показателями прочности и модуля упругости, низким влагопоглощением и малой усадкой при отверждении. Эти свойства делают их отличной альтернативой традиционным термореактивным материалам, таким как фенолформальдегидные и эпоксидные смолы.

Несмотря на то, что к настоящему времени синтезировано большое количество бензоксазиновых мономеров различной структуры, строение образующихся при их отверждении трехмерных полимеров еще не до конца установлено. И хотя есть общее представление о механизме полимеризации и об образующейся структуре полимеров, исследование химического строения полибензоксазинов осуществляется по настоящее время.

Степень разработанности темы. На сегодняшний день исследована в полимеризация монобензоксазинов основном катализируемая кислотами Бренстеда. Установлено, что в процессе такой полимеризации возможно образование *N*,*O*-ацетальной и аминофенольной структуры (структуры Манниха), процесс дезаминирования последней с образованием описан фенольной метиленовой структуры и свободного летучего амина. При этом химическую структуру образующихся полибензоксазинов устанавливают на основе ИК- и ¹Н ЯМР спектроскопии, что является недостаточным для точного определения структуры полимеров, особенно в случае образования сшитых трехмерных структур, которые характерны лля дифункциональных бензоксазинов. Исследований, посвященных каталитической и термической полимеризации дибензоксазинов существенно меньше, в то время как именно они являются промышленно Установление применимыми. точного механизма ИХ

полимеризации, а также химической структуры полидибензоксазинов позволит более эффективно выбирать рецептуру связующих и каталитические системы.

Цель работы. Исследование процессов термический полимеризации бензоксазинов и закономерностей образования химической структуры полибензоксазинов на основе ароматических диаминов и гомологов фенола.

Задачи работы.

1. Синтезировать ряд бензоксазиновых мономеров на основе изомеров диаминодифенилметана для выявления влияния положения аминогруппы в исходном диамине на реакционную способность мономеров и термомеханические характеристики образующихся полибензоксазинов;

2. Синтезировать ряд бензоксазиновых мономеров на основе 4,4'-диаминодифенилметана и фенола (два реакционных положения), крезолов (одно реакционное положение), 2,4-диметилфенола (реакционные положения заблокированы) сравнить их реакционную способность и установить возможность протекания полимеризации по ариламинному фрагменту;

3. Идентифицировать возможные процессы дезаминирования при полимеризации, обнаруженные в модельных монобензоксазинах, но неописанные для дибензоксазинов;

4. Объяснить образование иминных связей структуре полидибензоксазинов на основе 4,4'-диаминодифенилметана и гомологов фенола;

Сопоставить химическую структуру, образующуюся при термической полимеризации дифункциональных бензоксазинов на основе (а)
4,4'-диаминодифенилметана и гомологов фенола, (б) бисфенола А и анилина.

Научная новизна. В выполнения диссертационной работы ходе синтезированы два неописанных ранее дифункциональных бензоксазиновых мономера на основе 3,3'- и 3,4'-диаминодифенилметана. Установлена с помощью спектроскопии ЯМР твердого тела на ядрах ¹³С с вращением под «магическим» сетчатых полибензоксазинов химическая структура углом на основе 4,4'-диаминодифенилметана и гомологов фенола в зависимости от времени и степени отверждения при 180 °C. Впервые предложена схема термической полимеризации бензоксазинов, включающая процессы передачи и обрыва цепи и объясняющая образование структур полииминного типа.

Теоретическая практическая значимость. Установленные И закономерности и температурно-временные характеристики полимеризации бензоксазиновых мономеров в зависимости от их строения уточняют имеющиеся знания о полимеризации 1,3-оксазиновых гетероциклов и химической структуре образующихся полибензоксазинов, позволяют перейти к обоснованному молекулярному дизайну новых бензоксазиновых мономеров, а также обеспечивают дополнительные возможности регулирования процессов полимеризации бензоксазинов, что необходимо для расширения линейки связующих для полимерных композиционных материалов на их основе.

Методология и методы исследования. Для анализа химического строения бензоксазиновых мономеров и полимеров в настоящей работе были применены следующие методы: ¹H и ¹³C ЯМР спектроскопия, ИК-спектроскопия, ¹³C ЯМР спектроскопия твердого тела с вращением под «магическим» углом, MALDI-TOF масс-спектрометрия и гель-проникающая хроматография. Для изучения процесса полимеризации бензоксазиновых мономеров и термомеханических характеристик конечных полибензоксазинов применялись методы ДМА, ДСК и ТГА.

Положения, выносимые на защиту:

1. Синтез новых бензоксазинов на основе 3,3'- и 3,4'-диаминодифенилметана и термомеханические свойства полимеров на их основе в сравнении с полидибензоксазином на основе 4,4'-диаминодифенилметана.

2. Химическое строение сетчатых полибензоксазинов на основе 4,4'-диаминодифенилметана и гомологов фенола, образующееся в процессе термической полимеризации.

3. Схема полимеризации дибензоксазинов, включающая процессы передачи, обрыва цепи и образование структур полииминного типа.

Степень достоверности результатов. Достоверность полученных результатов подтверждена применением комплекса современных инструментальных методов анализа.

Апробация работы. Результаты диссертации представлены на международных и всероссийских конференциях, в том числе на: XXX Международной научной конференции студентов, аспирантов и молодых ученых «Ломоносов-2023» (г. Москва, 2023 г.); XXXIII Российской молодежной конференции с международным участием «Проблемы теоретической И экспериментальной химии» (г. Екатеринбург, 2023 г.); XIX Международном конгрессе молодых ученых по химии и химической технологии МКХТ-2023 (г. Москва, 2023 г.); Всероссийской конференции с международным участием «Современные проблемы науки о полимерах» (г. Санкт-Петербург, 2023 г.); 5th International Symposium on Polybenzoxazines (Bangkok, 2024 г.).

Публикации. Основные положения диссертации получили полное отражение в 3 статьях в журналах, индексируемых в международных базах данных Web of Science и Scopus.

Объем и структура диссертации. Диссертация состоит из введения, обзора литературы, экспериментальной части, обсуждения результатов, заключения, списка сокращений и условных обозначений, списка литературы и приложений. Общий объем работы 134 страницы, включая 37 рисунков, 12 таблиц, библиографию из 140 наименований и 12 приложений.

1 ОБЗОР ЛИТЕРАТУРЫ

Бензоксазины являются гетероциклическими соединениями, способными к термической полимеризации с раскрытием оксазинового цикла без применения инициаторов, катализаторов и отвердителей. Как класс соединений широкое распространение они получили начиная с 1990-х годов и в настоящее время интерес к ним только возрастает, разрабатываются новые бензоксазиновые соединения и связующие на их основе для полимерных композиционных материалов (ПКМ) [1].

Бензоксазиновые мономеры обладают эффективной совместимостью со полимерами, a образующиеся В процессе ИХ полимеризации многими полибензоксазины низкой характеризуются воспламеняемостью, высокой термической и химической стойкостью, коррозионной стойкостью, высокими прочности и упругости показателями модуля при растяжении, низким влагопоглощением и низкой усадкой при отверждении. Эти свойства делают их отличной альтернативой традиционным термореактивным материалам, таким как фенолформальдегидные и эпоксидные смолы [2,3].

Классическим применением бензоксазинов является их использование в качестве компонентов связующих для ПКМ и компаундов в аэрокосмической и оборонной промышленности, автомобилестроении, электротехнике и электронике, а также строительстве за счет их термической стойкости, негорючести и прочности при малом весе. Другим немаловажным применением является их использование в составе клеев и материалов антифрикционного назначения.

1.1 Номенклатура бензоксазиновых мономеров

Бензоксазины в целом представляют собой соединения, в молекуле которых к бензольному кольцу присоединен шестичленный гетероцикл, содержащий атом азота и атом кислорода.

В зависимости от положения гетероатомов можно получить различные структуры бензоксазинов. По номенклатуре ИЮПАК структуру I можно назвать 3-метил-3,4-дигидро-2H-бензо[е]1,3-оксазином, традиционно называя просто 1,3-бензоксазином. Соответственно, структура II называется 4-метил-3,4-дигидро-2H-бензо[b]1,4-оксазин или просто 1,4-бензоксазин, а структура III – 1-метил-1,4-дигидро-2H-бензо[d]1,3-оксазин или просто 3,1-бензоксазин [1].

Однако номенклатура ИЮПАК из-за своей сложности редко используется на практике при наименовании. Чаще всего используют сокращения из первых букв исходных соединений, из которых был синтезирован бензоксазин. Заглавная буква в названии используется для обозначения фенольного исходного компонента, а строчная — для обозначения исходного аминного компонента.

Например, бензоксазиновый мономер на основе бисфенола A и анилина будет называться ВА-а (1), бензоксазин на основе фенола и анилина будет называться P-а (2), соответственно. После полимеризации приставка «poly» используется для обозначения полибензоксазинов.

10

1.2 Классификация бензоксазиновых мономеров

Бензоксазины классифицируют по количеству оксазиновых циклов в структуре мономера [1]. Из фенола и анилина образуется монофункциональный бензоксазин **IV**. В свою очередь, бифункциональные бензоксазины могут быть получены из бифункциональных производных фенола и монофункционального амина **V** или же из фенола и бифункционального амина **VI**. Также, можно получить многофункциональные бензоксазины, используя в качестве исходных компонентов бифункциональные фенолы и амины **VII**.

Монофункциональный бензоксазиновый мономер на основе фенола и

анилина

IV

Бифункциональный бензоксазиновый мономер на основе бисфенола F и

анилина

Бифункциональный бензоксазиновый мономер на основе фенола и 4,4'-

диаминодифенилметана

VI

Многофункциональный бензоксазиновый мономер на основе бисфенола F и 4,4'-диаминодифенилметана

VII

Также Х. Ишида, обобщая достижения в области бензоксазинов за 30 лет исследований, предложил их классификацию по 4 поколениям [1]:

1-е поколение: Нефункциональные мономеры

1.1. Монобензоксазины

1.2. Дибензоксазины

1.2.1. Типа А – на основе бисфенолов.

1.2.2. Типа В – на основе диаминов.

2-е поколение: Функциональные мономеры

2.1. С функциональными группами, способными к гомополимеризации и/или вступающих в реакцию по мере полимеризации самого бензоксазина: ацетиленовые, альдегидные, эпоксидные, пропаргильные, винил-эфирные, аллильные, нитрильные, фталонитрильные, оксазилиновые, малеимидные, норборненовые группы.

2.2. С функциональными группами, обеспечивающими способность к сополимеризации с полимерами других классов: фенольные, карбоксильные, метилольные, этилольные, гидроксиэтилэфирные группы, первичные амины и др.

<u>3-е поколение: Полимеры с полимеризационно-способными бензоксазиновыми</u> циклами

3.1. Телехелатные (с концевыми бензоксазиновыми группами).

3.2. Полимеры с бензоксазинами в качестве привитой боковой группы: полистирол, поливинилхлорид, поливинилиденхлорид, поливиниловый спирт, целлюлоза, хитозан и др.

3.3. С бензоксазинами в основной цепи полимера (тип С) [1].4-е поколение: Смарт бензоксазины (с дополнительной функцией)

4.1. Термочувствительные смарт полибензоксазины.

4.2. Витримеры на основе бензоксазинов.

4.3. Экологические чистые полибензоксазины (из биосырья, биоразлагаемые).

4.4. Латентные автокаталитические системы.

и др.

С точки зрения практического применения бензоксазиновые мономеры можно разделить на специальные и коммерческие. В настоящее время среди коммерческих бензоксазинов наиболее широко известны мономеры на основе бисфенола A и анилина (BA-a), а также на основе фенола и 4,4'-диаминодифенилметана (P-ddm) [1].

1.3 Синтез бензоксазиновых мономеров

1.3.1 Одностадийный синтез бензоксазинов в расплаве

Бензоксазиновые мономеры впервые были получены еще в 1944 году Холли и Коупом конденсацией Манниха, а именно взаимодействием формальдегида с *о*-гидроксибензиламином (3) [4].

$$\bigcirc \mathsf{H}_{\mathsf{NH}_2} + \mathsf{CH}_2\mathsf{O} \longrightarrow \bigcirc \mathsf{NH}_2$$
 (3)

На сегодняшний день распространенным методом получения бензоксазинов является способ, предложенный Берком в 1949 году, заключающийся в конденсации фенола, первичных аминов и формальдегида в расплаве по реакции Манниха (4) [5].

Благодаря своей простоте, разнообразию и доступности исходного сырья этот метод нашел широкое применение для синтеза бензоксазинов на основе различных замещенных ароматических моноаминов, моно- и дифенолов. Так, были получены монобензоксазины, содержащие различные заместители в *орто-* и *пара*положениях исходных аминов и фенолов [6,7], а также бифункциональные бензоксазины на основе бисфенола А и метилзамещенных аминов [8].

Данная методика обеспечивает высокую скорость реакции за счет прямого взаимодействия между реагентами, которое невозможно при проведении реакции в растворе. К тому же, отсутствие растворителя делает этот метод более экологически выгодным. Однако, на начальной стадии реакции система является гетерогенной и включает в себя такие физико-химические процессы как абсорбция, диффузия, переход фаз и растворение, которые предшествуют химической реакции. А при высокой температуре и длительном времени ведения процесса, возможно раскрытие оксазиновых циклов с образованием олигомерных продуктов [9].

1.3.2 Одностадийный синтез бензоксазинов в растворе

Синтез в растворе в свою очередь обеспечивает получение бензоксазиновых мономеров высокой чистоты. Однако из-за низкой концентрации веществ в растворе, необходимо более длительное время протекания реакции [9].

В качестве растворителей используют неполярные, такие как диоксан, толуол и хлороформ. А источником формальдегида является либо параформальдегид, либо формалин. Синтез осуществляют в течение 6 часов при температуре кипения растворителя [10].

Синтез в растворе часто применяется для бензоксазинов, на основе диаминов [11–14], так как синтез таких соединений в расплаве сопровождается значительной олигомеризацией бензоксазиновых мономеров.

Поскольку первая стадия реакции синтеза бензоксазинов заключается в образовании интермедиата – триазинана [15], из-за наличия в структуре молекул ароматических диаминов двух аминогрупп, они часто образуют нерастворимые триазинановые сшитые цепи, которые приводят к гетерогенности системы (5). И для успешного проведения реакции образования бензоксазинового цикла (6) необходимо, чтобы скорость диссоциации триазинана была выше скорости реакции его образования [16].

Было найдено, что проведение реакции в смеси неполярного и полярного растворителей, например, толуол-этанол приводит к образованию гомогенного раствора [12,16,17], что означает образование триазинановых цепей с меньшей молекулярной массой. Предполагается, что полярные растворители сольватируют метилольные группы и снижают скорость образования тризинановой цепи (7).

1.3.3 Многостадийный синтез бензоксазинов

Иногда стадии образования триазинанового и бензоксазинового циклов разделяют, сводя синтез к двух отдельным стадиям. На первом этапе из ароматического амина и формальдегида получают триазинановый цикл, причем реакцию проводят как в расплаве [15], так и в среде толуола [7]. Затем осуществляют его конденсацию с формальдегидом и фенолом [7,15].

Таким способом получают различные монобензоксазины на основе фенолов, содержащих электроноакцепторные заместители в *мета-* и *пара-*положении [6], и аминов, содержащих, электронодорные заместители в *орто-* и *пара-*положениях [7].

Для получения бензоксазинов на основе ароматических диаминов высокой чистоты применят трехстадийный метод, в котором на первой стадии взаимодействием диаминов и *о*-гидроксиальдегидов в среде спиртов получают основания Шиффа (8). Синтез проводят при комнатной температуре в течение 24 часов, для ускорения реакции можно проводить синтез при температуре кипения растворителя в течение 4 часов. В качестве растворителя чаще всего используются полярные протонные растворители, например, этанол, изопропанол или полярные апротонные растворители, такие как ДМСО, ДМФА, диметилацетамид и др.

Вторую стадию восстановления основания Шиффа проводят при комнатной температуре с боргидридом натрия и/или водородом (9) в течение 12 часов, хотя в ряде источников сообщается о недостаточной эффективности водорода [12]. В качестве растворителя чаще всего используют этанол, реже ТГФ.

На заключительном этапе конденсацией восстановленного основания Шиффа с параформальдегидом в среде хлороформа, толуола или диоксана получают бензоксазин (10) [12,18]. При выборе растворителя необходимо учитывать трудоемкость удаления растворителя, и с этой точки зрения высококипящие растворители невыгодны, так как даже после 8-часовой сушки при 150 °C невозможно полностью удалить. Использование ИХ системы формалин/хлороформ имеет существенное преимущество, так как из-за

несмешиваемости воды и хлороформа равновесие реакции смещается в сторону образования продуктов реакции. Трехстадийный способ дает возможность получения очень чистых мономеров в виде монокристаллов, особенно если после каждой стадии полупродукт выделяют и очищают перекристаллизацией.

1.3.4 Альтернативные способы получения бензоксазинов

Использование органических растворителей в промышленном синтезе на сегодняшний день является нежелательным из-за токсичности, взрывоопасности, необходимости регенерации и утилизации, поэтому в настоящее время ведется поиск других, альтернативных методов получения бензоксазиновых мономеров и полимеров на их основе. Они основаны на применении либо менее токсичных растворителей, либо безрастворных методов.

Так в работе [19] были получены замещенные монобензоксазины трехстадийным растворным способом в среде полиэтиленгликоля (ПЭГ-400). Синтез бензоксазинового мономера на третьей стадии проводили при 40 °C в течение 2 часов, что является достаточно низкой температурой реакции по сравнению с классическим синтезом в толуоле или хлороформе.

Кроме того, еще одним безопасным способом синтеза бензоксазиновых мономеров является их получение в водном растворе или в смеси воды и органического растворителя (например, этилацетата до 10 % масс.) [20].

Для решения проблем синтеза бензоксазинов в расплаве, связанных с неоднородностью нагрева и высокой вязкостью реакционной массы, был предложен метод с использованием микроволнового излучения [21,22]. Нагрев с помощью микроволн, происходит за счет так называемого диэлектрического нагрева, который избирательно взаимодействует с диполями молекул, преобразуя электромагнитную энергию в тепло. Правильная ориентация полярных молекул приводит к более эффективным молекулярным столкновениям, что снижает энергию активации реакции и облегчает взаимодействие молекул исходных данный способ получения не подходит веществ. Олнако ДЛЯ синтеза бензоксазиновых мономеров с другими альдегидами, кроме формальдегида [23]. Возможно, это связано с возникающими стерическими затруднениями при циклизации [24].

По сравнению с классическим синтезом бензоксазинов в среде растворителей при нагревании, метод с микроволновым излучением обладает рядом преимуществ, такими как высокий выход продукта (более 68 %), простота использования метода, небольшое время реакции (порядка нескольких минут) [23].

Другим альтернативным методом получения бензоксазиновых мономеров является растворный способ с использованием ультразвука. При этом синтез проводят при комнатной температуре, что уменьшает вероятность протекания побочных реакций. Данный метод более выгоден с точки зрения выхода конечного продукта и времени реакции [25,26]. По данному методу в работе [27] были получены бензоксазиновые мономеры на основе диаминов. Время реакции при этом составляет 2,5 часа.

1.4 Механизм и побочные процессы при синтезе бензоксазиновых мономеров

Несмотря на большое число работ по синтезу бензоксазинов, лишь малая их часть посвящена изучению механизма образования бензоксазиновых мономеров и идентификации возможных побочных продуктов. Помимо того, что побочные продукты являются индикаторами промежуточных стадий реакции, они влияют на стадии сшивки и обрыва цепи, что может иметь место, если эти соединения присутствуют на этапе полимеризации даже в следовых количествах, что делает их выявление значимым для прогнозирования свойств будущего полимера.

Ишида предложил [1] два механизма получения бензоксазина на основе гипотезы о формировании промежуточного иона иминия, основываясь на наблюдениях Бёрка [5]. Первый вариант механизма этой реакции (11) протекает в общем виде через N-гидроксиметиламин Β, который образуется при присоединении формальдегида к анилину с последующим его превращением в ион иминия G, который в свою очередь дает промежуточное соединение Н при реакции с фенолом. Наличие промежуточного соединения Н подтверждено его получением ex situ и его превращением в бензоксазин Р-а в условиях основного катализа после добавления формальдегида и замещения гидроксида [1]. В 2015 году Чжан с коллегами обнаружили промежуточное соединение Η с помощью высокоэффективной жидкостной хроматографии масс-спектрометрией с (ВЭЖХ-MC) и ядерного магнитного резонанса на ядрах ¹H и ¹³C [28].

Второе предположение Ишиды о механизме образования бензоксазина, основанное также на работе Бёрка, описывает образование N,N-дигидроксиметиламина C в результате реакции амина B с другой молекулой формальдегида, в результате которой образуется иминий-ион D (12) [1,3].

Тем не менее, точная идентификация других возможных менее устойчивых промежуточных продуктов после разделения высокоэффективной жидкостной задачей. хроматографией остается сложной Помимо косвенных экспериментальных данных и теоретических исследований [29–31], углубленного изучения механизма этой реакции долгое время не проводилось и прямых подтверждений образования экспериментальных В реакционных средах обсуждавшихся выше интермедиатов, особенно интермедиатов D И G, представлено не было.

Вместе с тем указанные гипотезы о механизме с образованием иона иминия, идентификацией промежуточных продуктов в трудности с несмотря на [29,32,33], реакционных средах подтверждаются различными экспериментальными [34–39] и теоретическими [40–44] изысканиями на примере аналогичных промежуточных частиц, встречающихся в реакциях других классов соединений, И В настоящий момент являются теоретической основой, используемой для объяснения многих механизмов и закономерностей катализа [45–47]. Лишь в 2019 году для установления наиболее соответствующего действительности из двух ранее предложенных Бёрком и Ишидой механизмов в работе [48] применили комбинацию масс-спектрометрии с ионизацией электрораспылением в положительном режиме (ESI(+)-MS) и инфракрасной спектроскопии многофотонной диссоциации (IRMPD), что позволило однозначно зафиксировать определить механизм И непосредственно промежуточные соединения иминия. Результаты представлены на схеме (13) и далее на схемах (14) – (16), представленных в виде, отражающем ионы, зафиксированные ESI(+)-MS (обведены красным пунктиром), а символами ✓, × обозначены соединения, обнаруженные и не выявленные методом IRMPD соответственно.

Результаты IRMPD-спектроскопии подтверждают, что механизм реакции в кислых условиях преимущественно протекает по первому варианту, предложенному Бёрком (схема (13)-а), через образование иминий-иона G с последующей реакцией с фенолом, а не последовательной реакцией анилина и интермедиата B1 с молекулами формальдегида (схема (13)-б).

Механизм по Бёрку (схема (13)-а) начинается с образования иминного промежуточного соединения G путем дегидратации промежуточного соединения B1. Из-за высокой реакционной способности иминиевого интермедиата G нуклеофильное орто-присоединение фенола может привести к получению интермедиата H (m/z = 200), который наблюдался ранее [28,49]. Промежуточный продукт H может образовываться как в виде *пара*-, так и *орто*-изомеров, однако *пара*-изомер не может образовывать циклический бензоксазин P-а из-за геометрических ограничений [28,49]. Аминофенольный промежуточный продукт H затем атакует другую молекулу формальдегида, образуя промежуточный продукт E (m/z = 230), что приводит к образованию продуктов в частичном соответствии со вторым вариантом механизма по Ишиде (схема (13)-б). Заключительные этапы реакции (14) включают образование промежуточного

21

продукта Е (m/z = 230) и протонированного бензоксазина, проявляющегося в виде трех изомерных ионов F1, F2 и F3 (m/z = 212).

IRMPD-спектроскопия иона с m/z = 136 однозначно показала образование побочных продуктов J1 и J2 реакцией иминия G с формальдегидом (15), что служит косвенным свидетельством в пользу справедливости механизма по Бёрку (схема (13)-а). Кроме того, найдено, что в условиях масс-спектрометрии наблюдается диссоциация существующего исключительного в виде промежуточного продукта для механизма (13)-а промежуточного соединения H, на ион с m/z = 106, соответствующий иминию G. Последний так же обнаруживается в газовой фазе с помощью спектроскопии IRMPD, и можно предположить присутствие этого соединения и в растворе, особенно с учетом выявленного присутствия побочных соединений J1/J2.

Также в реакционной среде были идентифицированы с использованием IRMPD-спектроскопии другие важные побочные продукты G1 и G2, представляющие собой начальную стадию реакции конденсации (16) в результате

нуклеофильной атаки как из *орто*-, так и из *пара*-положений анилинового кольца соответственно, что согласуется с предыдущими исследованиями [31,50].

На основании рассмотренных закономерностей, а также с учетом ранних работ по изучению кинетики образования бензоксазина Р-а и побочных продуктов методом ВЭЖХ [28,49], все процессы, протекающие при синтезе бензоксазиновых мономеров, можно обобщить схемой (17).

1.5 Полимеризация бензоксазиновых мономеров

Для бензоксазиновых мономеров как класса соединений характерно протекание термической полимеризации по катионному механизму с раскрытием оксазинового цикла в диапазоне температур 160 – 220 °C. В зависимости от процессе функциональности бензоксазинов В полимеризации могут образовываться как линейные, так и разветвленные полибензоксазины. Так, полимеризация монобензоксазинов приводит к линейным, слаборазветвленным структурам. Образование внутримолекулярной водородной связи, а также конкуренция между реакцией раскрытия оксазинового цикла и реакцией роста цепи исключают возможность образования высокомолекулярных линейных структур [51,52]. Также, следует отметить, что полимеризация монобензоксазинов осложнена их испарением в процессе полимеризации. Однако, полибензоксазины на основе фенола и анилина poly(P-a), фенола и *м*-толуидина poly(P-mt), фенола и 3,5-диметиланилина poly(P-35х) являются слабосшитыми полимерами [53].

В отличие от монобензоксазинов для би- и многофункциональных бензоксазинов характерно образование высокомолекулярных сшитых структур, что сделало их более широко применимыми в качестве связующих для ПКМ.

Реакционную способность бензоксазиновых мономеров начал изучать еще Берк в 1949 году. Он сообщил о реакции раскрытия оксазинового цикла 1,3-дигидробензоксазина фенолом с преимущественным аминоалкилированием по свободному *о*-положению фенола [5,54]. Рисс с коллегами, исследуя реакцию монобензоксазинов с 2,4-дитретбутилфенолом, пришел к аналогичным выводам. Он предположил, что присоединение в *орто*-положение происходит с вследствие межмолекулярной координации с возникновением межмолекулярной двойной связи по схеме (18), а в *пара*-положение – через предварительную диссоциацию фенола (19) [55].

координация вследствие межмолекулярной двойной связи (орто-присоединение)

Также Рисс с коллегами, получая олигомеры и полимеры на основе различных монобензоксазинов при термическом инициировании, а также в присутствии 2,4-дитретбутилфенола, предложили две альтернативные схемы инициирования полимеризации, первая основывалась на упомянутой реакции конденсации фенола и бензоксазина, а вторая предполагала протонирование молекулы бензоксазина вследствие диссоциации иницииатора с последующим раскрытием бензоксазинового цикла и образованием активного центра [55].

Второй вариант косвенно подтверждался наблюдениями МакДонаха и Смита. которые изучали полимеризацию бензоксазинов на основе о-гидроксибензиламина И различных алифатических И ароматических карбонильных соединений в 1968 году [56,57]. Они предположили, что протонированные производные бензоксазинов способны к кольцевой-цепной таутомерии за счет миграции протона от атома азота к атому кислорода. Таким образом, происходит образование иминиевых ионов в цепочной форме (20).

Дальнейшие работы были посвящены механизму полимеризации бензоксазинов, основанному на их предварительном протонировании, например, фенолом с целью инициирования процесса полимеризации [55]. Позднее Ишида с

коллегами, активно изучая полимеризацию бензоксазинов с различными катализаторами, предложил механизм, протекающий по катионному механизму и предполагающий образование иминиевого катиона посредством протонирования атома кислорода оксазинового цикла и последующее электрофильное ароматическое замещение на другой молекуле бензоксазина (21) [58].

И продолжая изучать стадию инициирования, Ишида показал [59], что раскрытие бензоксазинового цикла возможно не только через протонирование атома кислорода, но и азота (22), однако продукт О-протонирования ВZ О-ргот является значительно более активным в дальнейших реакциях и вносящим основной вклад в полимеризацию, что в целом подтверждает предложенную ранее схему. Позднее было показано [60] существование в растворе всех трех промежуточных соединений.

Однако, из схем механизмов образования активного центра и акта роста цепи, предложенных Ишидой остается не до конца ясным, происходит ли регенерация активного центра после каждого акта электрофильного присоединения в *о*-положение следующей молекулы бензоксазина, или оно возможно только после нового акта раскрытия бензоксазинового цикла.

Помимо реакции роста цепи по свободному *орто*-положению фенольного фрагмента бензоксазина, возможен рост цепи посредством реакции атома кислорода или азота бензоксазинового цикла. В зависимости от условий реакции полимеризации возможно образование как аминофенольной структуры (структуры Манниха), так и фенокси- (*N*,*O*-ацетальной) структуры (23), которая является неустойчивой, и при дальнейшем нагревании в результате внутримолекулярной перегруппировки перестраивается в стабильную структуру, состоящую из фенольных мостиков Манниха (24) [61–67].

27

В недавней работе [60] с использованием комбинации высокоточных методов масс-спектрометрии и инфракрасной многофотонной диссоциации ESI(+)-MS-IRMPD ESI(+)-MS-IMS исследовали И начальную стадию полимеризации мономера P-а в присутствии 0,1 % муравьиной кислоты и, вопервых, подтвердили, что продуктом раскрытия бензоксазинового цикла вследствие протонирования по схеме (22) действительно является ранее предположенный иминий-ион BZ-ROP, образующийся из протонированных форм бензоксазина BZ-N-prot и BZ-O-prot. Во-вторых, было установлено, что основными продуктами акта присоединения мономера являются фенокси- и фенольные формы димеров (схема (25)).

В-третьих, энергетические расчеты показали, что переходное состояние в фенольную форму менее энергетически выгодно ($\Delta G_f = 144,1$ и 121,1 кДж/моль соответственно), а фенольная форма цепи, напротив, более выгодная в сравнении с *N*,*O*-ацетальной ($\Delta G_f = 65,2$ и 84,6 кДж/моль соответственно). Это также соответствует экспериментальным наблюдениям ранних работ, в которых предполагалось первоначальное образование фенокси-структур и их последующая перегруппировка в полиаминофенольную структуру.

В работе [68] предложена схема отверждения бензоксазина pC-а в чистом виде и в присутствии катализаторов различных типов на основании анализа ¹H ЯМР-спектров фиксирует три основных набора реакций отверждения – 1) <u>координационное раскрытие циклов</u> \rightarrow 2) <u>электрофильная атака</u> \rightarrow 3) <u>перегруппировка</u>; и является, по сути, обобщением наблюдаемых процессов в ранних работах других авторов. В более упрощенном и обобщенном виде механизм отверждения бензоксазинов можно представить схемой (26).

Помимо аминофенольной и фенокси-структуры, в процессе полимеризации также может образовываться структура, состоящая из фенольных метиленовых мостиков. Предполагается, что этот процесс сопровождается выделением свободного амина (27) [59].

$$\overset{\circ}{\overset{\circ}{\underset{H^{\oplus}}}} \overset{R}{\overset{H^{\oplus}}{\underset{H^{\oplus}}}} \overset{H^{\oplus}}{\overset{\circ}{\underset{H^{\oplus}}}} \overset{R}{\overset{\circ}{\underset{R^{\oplus}}}} \overset{OH}{\overset{\circ}{\underset{R^{\oplus}}}} \overset{OH}{\underset{R^{\oplus}}{\underset{H^{\oplus}}}} \overset{OH}{\underset{R^{\oplus}}{\underset{H^{\oplus}}}} \overset{OH}{\underset{H^{\oplus}}{\underset{H^{\oplus}}}} \overset{OH}{\underset{H^{\oplus}}{\underset{H^{\oplus}}{\underset{H^{\oplus}}}}} \overset{OH}{\underset{H^{\oplus}}{$$

В работе [69] предположили образование такой фенольной метиленовой структуры посредством перегруппировки растущего центра с последующим образованием свободного имина (28).

В работе [70] было показано, что возможно протекание термической полимеризации чистых бензоксазиновых мономеров, не содержащих побочных соединений в качестве катализаторов реакции раскрытия оксазинового цикла. Однако она протекает при более высоких температурах. При термической полимеризации чистых бензоксазиновых мономеров также происходит формирование как фенокси-структуры, так и фенольных мостиков Манниха (26).

В некоторых работах также обсуждалась возможность полимеризации бензоксазиновых мономеров по свободным *орто-* и *пара-*положениям аминного фрагмента, поскольку эти положения также обогащены отрицательной электронной плотностью (29).

Так, в работе [71] синтезировали ряд бензоксазиновых мономеров на основе бисфенола А и 4,4'-диаминодифенилметана (30), *о*-диметилбисфенола А и

4,4'-диаминодифенилметана (31), *о*-диметилбисфенола A и *о*-тетраметилдиаминодифенилметана (32).

Было обнаружено, что полимеризация с раскрытием бензоксазинового цикла протекает даже в случае, когда отсутствуют свободные *орто-* и *пара-*положения фенольного фрагмента. Предположительный механизм полимеризации через свободные *о*-положения аминного фрагмента с формированием ариламиновых мостиков изображен на схеме (33).

Большой проблемой при отверждении бензоксазиновых мономеров является необходимость сильного нагревания, часто до температур начала деструкции, поэтому снижение температуры полимеризации является важной и актуальной задачей, а использование катализаторов – основным путем решения данной проблемы.

Поскольку полимеризация бензоксазиновых мономеров обусловлена тем, что атомы кислорода и азота обладают сильной основностью по Льюису, то кислотные ускоряют полимеризацию вышеописанному катализаторы ПО катионному осуществляют механизму. А основные катализаторы, В свою очередь, нуклеофильное раскрытие оксазинового цикла (34) [72]. Также возможно раскрытие оксазинового цикла сразу по двух механизмам, поскольку катализаторы состоят из катионной части, которая координируется с атомами азота и кислорода, и анионной части, которая играет нуклеофильную роль [73].

Кислотные соединения благодаря своей простоте и доступности широко используются в качестве катионных катализаторов. Они оказались наиболее эффективными в сравнении с различными анионными и радикальными катализаторами. При этом широкое применение нашли кислоты Льюиса, такие как PCl₅, PCl₃, POCl₃, TiCl₄, AlCl₃ [68,74–77]. Другими наиболее распространенными кислотными катализаторами являются сильные кислоты [78–80], фенолы [58,63,81–84] и карбоновые кислоты [63,84].

Основные катализаторы не привлекли особого внимания, хотя некоторые амины и имидазолы продемонстрировали хороший каталитический эффект на полимеризацию бензоксазинов [85]. При использовании основных катализаторов можно достичь новых интересных внутренних структур полимера. Особенно эффективным решением является создание каталитической системы, содержащей и основные и кислотные катализаторы.

Необходимо отметить, что большая часть исследований механизма и закономерностей полимеризации бензоксазинов основаны на изучении свойств модельных монобензоксазинов, работ, посвящённых имеющим практическое значение дибензоксазинов существенно меньше.

1.6 Влияние строения бензоксазиновых мономеров на полимеризацию

Процесс полимеризации, структура и свойства полибензоксазинов напрямую зависят от выбора исходных аминов и фенолов при синтезе бензоксазинов. Их разнообразие и доступность на рынке позволяют варьировать свойства

33

полибензоксазинов в широком диапазоне и получать полимеры с заданными характеристиками.

Для молекулярного дизайна бензоксазинов используют амины и фенолы с различными заместителями, электронные эффекты которых могут существенно повлиять на процесс полимеризации и свойства полибензоксазинов.

1.6.1 Влияние электроноакцепторных заместителей

В работах [6,7,86,87] изучали влияние электроноакцепторных заместителей в *пара*-положении фенольного и аминного фрагментов на реакционную способность бензоксазиновых мономеров. Для этого был синтезирован ряд бензоксазинов **VIII** – **XIX**.

Наличие электроноакцепторной группы в *пара*-положении фенольного фрагмента приводит к снижению температуры полимеризации при увеличении электроноакцепторного характера заместителей, за счет резонансной стабилизации структуры с открытым оксазиновым циклом.

Однако, наличие электроноакцепторной группы в *пара*-положении аминного фрагмента приводит к росту температуры начала полимеризации. Такая зависимость связана со дестабилизирующим эффектом, который оказывают электроноакцепторные заместители в аминном фрагменте на иминиевые ионы, которые в свою очередь осуществляют электрофильную атаку в ароматические кольца [7]. Исключением является бензоксазиновый мономер **XVII**, для которого наблюдается значительное снижение температуры полимеризации за счет кислотного характера карбоксильной группы, которая катализирует реакцию раскрытия оксазиновых циклов (таблица 1).

Таблица 1 – Температуры полимеризации монобензоксазинов с электроноакцепторными группами

Бензоксазин	VIII	IX	X	XI	XII	XIII	XIV	XIX	XVI	XVII	XVIII	XIX
Температура полимеризации (Т _{пик}), °С	180	201	226	232	247	246	253	276	262	204	274	289

Положительно влияет на свойства полибензоксазинов наличие реакционноспособных фталонитрильных заместителей в аминном фрагменте бензоксазинов ХХ – ХХІІІ. Такие полибензоксазины имеют более высокую термостабильность И плотность поперечных связей по сравнению С нереакционноспособными полибензоксазинами на основе бисфенола А и анилина **XXIV** и фенола и анилина **XXV** за счет формирования высокотермически стабильных сшитых структур (таблица 2) [88–93].

XXIII

ÇΝ

.CN

CN

.CN

XXV

Таблица 2 – Термические свойства фталонитрильных бензоксазинов

Бензоксазин	XX	XXI	XXII	XXIII	XXIV	XXV
Т _{пик} , °С	220	285	185	268	251	262
T _g , °C	-	278	-	300	168	111
Коксовый остаток (% при 800 °C)	81	76	74	68	30	46
Температура 5 %-ой потери массы, °С	491	450	458	423	315	-
Температура 10 %-ой потери массы, °С	592	560	524	468	-	357
Также изучалось влияние электроноакцепторных заместителей в *мета*-положении фенольного фрагмента [86,94]. В *мета*-положении электроноакцепторные группы повышают кислотность фенольного фрагмента в меньшей степени, чем в *пара*-положении, тем самым оказывая более слабое влияние на реакцию раскрытия оксазиновых циклов.

Влияние электроноакцепторных заместителей в *орто*-положении исходных фенола и амина на полимеризацию бензоксазиновых мономеров почти не освещено в литературе, поскольку, очевидно, что блокирование *орто*-положения фенола, по которому преимущественно протекает реакция полимеризации приведет к росту температуры полимеризации и образованию низкомолекулярных структур. К тому же *орто*-заместители будут оказывать стерическое влияние, а некоторые из них способны образовывать внутримолекулярные водородные связи.

1.6.2 Влияние электронодонорных заместителей

В случае электронодонорных заместителей, находящихся как в фенольном, так и в аминном фрагментах бензоксазиновых мономеров, наблюдается их негативное влияние на протекание реакции полимеризации [7,86,95,96].

Так, в ряду бензоксазинов на основе этилендиамина и фенола **XXVI**, *пара*-крезола **XXVI** и *орто*-крезола **XXVI** наблюдается смещение температуры начала полимеризации в область более высоких температур на 48,5 °C (таблица 3), что указывает на снижение реакционной способности приведенных бензоксазиновых мономеров [97].

XXVI

XXVII

XXVIII

Бензоксазин	XXVI	XXVI	XXVI
Температура полимеризации (Т _{пик}), °С	185	193	234

В своих работах Ишида с коллегами изучали влияние электронодонорных метильных заместителей в аминном фрагменте на протекание процесса полимеризации, химическую структуру и свойства полибензоксазинов. В качестве объектов исследования были выбраны бифункциональные бензоксазины, на основе бисфенола A и ряда аминов: анилина (BA-a), о-толуидина (BA-ot), м-толуидина (BA-mt), п-толуидина (BA-pt) и 3,5-ксилидина (BA-35x) [8,98].

Подобные исследования проводились и для монобензоксазинов на основе фенола [99], 2,4-диметилфенола и 4-третбутил-фенола [100]. В качестве аминов, помимо выше описанных, также использовали 4-метоксианилин и 4-аминофенол [7].

Наличие одного или двух метильных заместителей в *мета*-положении амина улучшает термические (таблица 4) и механические (таблица 5) характеристики полибензоксазинов за счет активации *орто-* и *пара*-положений аминного бензольного кольца. Использование *мета*-толуидина или 3,5-ксилидина вместо анилина приводит к более плотной сшивке и улучшению термостабильности полибензоксазинов, а также наблюдается смещение начала процесса полимеризации в область более низких температур [8,98,99]. При этом в процессе полимеризации помимо фенольных мостиков Манниха образуются ариламиновые мостики Манниха и метиленовые мостики (рисунок 1) [8,98,100].

Рисунок 1 – а) фенольные мостики Манниха, б) ариламиновые метиленовые мостики, в) ариламиновые мостики Манниха, г) бисфенольные метиленовые мостики

Электродонорные заместители в орто-положении аминного фрагмента приводят К снижению термических И механических характеристик полибензоксазинов. Наблюдается снижение ИХ температур стеклования [9,10,86,88] 4). Химическая (таблица структура цепи орто-замещенных полибензоксазинов состоит в основном из фенольных мостиков Манниха с небольшим количеством ариламиновых структур и содержит значительное количество оборванных цепей, которые легко улетучиваются [10,86].

Электронодонорные заместители в *пара*-положении аминного фрагмента снижают свойства полибензоксазинов, но в гораздо меньшей степени, чем заместители в *орто*-положении (таблицы 4 и 5) [7,8,98,100]. Их химическая структура также, как и у незамещенных полибензоксазинов состоит из фенольных мостиков Манниха с небольшим количеством ариламиновых структур [8,100].

39

Бензоксазин	BA-a	BA-ot	BA-mt	BA-pt	BA-35x
Т _{пик} , °С	251	247	231	259	217
T _g , °C	168	114	209	158	238
Коксовый остаток (% при 800 °С)	30	32	31	32	28
T _{1%} , °C	276	220	300	264	318
T _{5%} , °C	315	228	350	305	350

Таблица 4 – Термические свойства дифункциональных полибензоксазинов

Таблица 5 – Механические свойства дифункциональных полибензоксазинов

Бензоксазин	BA-pt	BA-a	BA-mt	BA-35x
Модуль накопления 28 °С (ГПа)	1,22	1,39	1,78	1,63
Модуль потерь 28 °С (МПа)	20,8	15,7	35,8	25,9
Молекулярный масса между поперечными связями	-	1300	500	430
Молекулярная масса между сшивками	-	610	360	325
Плотность сшивки (моль/см ³)	-	1,1*10 ⁻³	1,9*10 ⁻³	2,6*10 ⁻³
Плотность при 27,5 °С (г/см ³)	1,29	1,33	1,32	1,26

1.7 Термическая деструкция полибензоксазинов

Одно из важнейших свойств полимеров – термическая стабильность, которая определяет верхнюю границу применения полимерных материалов. Для понимания термостабильности полимеров, необходимо изучить особенности процесса их термической деструкции. Известно, что процесс термический деструкции полимеров и материалов на их основе является одним из наиболее комплексных и многофакторных. Так, на нее влияют структуры основной и боковой цепи, наличие и тип заместителей в основной цепи и её ответвлениях, плотность сшивки, молекулярная масса, условия деградации (на воздухе или инертной среде) [101].

В ряде работ изучали термическую деструкцию модельных бензоксазиновых димеров и олигомеров, состоящих их фенольных мостиков Манниха, с целью

упростить изучение сложного процесса термодеструкции полибензоксазинов. Так, в работах [102,103] изучали термодеструкцию бензоксазиновых димеров на основе 2,4-диметилфенола и различных алифатических аминов. Результаты термогравиметрического анализа и газовой хроматографии с масс-спектрометром показали, что в процессе деградации образуются основания Шиффа, вторичные амины и замещенные фенолы. На схеме (35) показаны предложенные механизмы деградации олигомеров, основанные на расщеплении связей С–N и С–С.

Также было замечено, что димеры на основе объемных аминов преимущественно образуют основания Шиффа путем разрыва связи C–N, в то время как небольшие амины склонны разрывать связь C–C с образованием вторичных аминов.

Однако, процесс термодеструкции бензоксазиновых димеров на основе *пара*-крезола отличается [103], поскольку из-за наличия свободного *орто*-положения фенола образуются бисфенольные соединения (36), к тому же

возможно образование дифенильных соединений посредством сшивания фенолов (37).

Поскольку деградация полибензоксазинов происходит в основном путем разрыва связи С–N, строение исходного амина оказывает непосредственное влияние на механизм деградации. И поэтому в работе [102] также была изучена деградация полибензоксазинов на основе бисфенола A и метиламина poly(BA-m), этиламина poly(BA-e), н-пропиламина poly(BA-np) и амиламина poly(BA-amyl) (38).

Было установлено, что с ростом длины цепи алифатического амина термостабильность снижается. И наибольшей термической стабильностью обладает полибензоксазин на основе метиламина. А межмолекулярные водородные связи оказывают большое влияние на расщепление мостика Манниха (39), (40).

На схеме (39) в процессе термодеструкции образуется основание Шиффа, так как внутримолекулярная водородная связь может образовывать стабильное шестичленное кольцо и связь С–N, которая не является частью внутримолекулярной циклической группы, разрывается легче связи С–С. В случае межмолекулярной связи, как показано на схеме (40) возможен разрыв как С–N, так и С–С связей, что приводит к образованию оснований Шиффа, вторичных и первичных аминов [101].

Также предполагается, что основания Шиффа, присутствующие в газах могут образовываться не только за счет разрыва фенольных мостиков Манниха, но и за счет испарения оснований Шиффа, находящихся в структуре полибензоксазинов [104].

В работах [98,105] также изучалось влияние строения исходного амина на термостабильность полибензоксазинов. Однако, исходные амины представляли собой различные метилзамещенные ароматические амины.

Процесс деградации полибензоксазина poly(BA-a) сводится к трем стадиям. На первом этапе термодеструкции образуются анилин и N-метиланилины, за счет разрыва фенольных мостиков Манниха, далее обнаруживаются различные замещенные фенолы, что связывают с разрывом изопропилиденовой связи основной цепи бисфенола А. На последнем этапе происходит пиролиз полукокса и выделяется большое количество замещенных бензолов.

1.8 Применение бензоксазиновых мономеров

Согласно отчету о рынке за 2022 год, бензоксазиновые мономеры в основном используются в качестве компонентов связующих полимерных композиционных материалов для аэрокосмической и оборонной промышленности. На втором месте по применению бензоксазинов находятся такие отрасли, как автомобилестроение и электроника (рисунок 2). Такое распределение по отраслям обусловлено огнестойкостью, низким дымовыделением и влагостойкостью полибензоксазинов. И с каждым годом интерес к ним только возрастает.

Рисунок 2 – Применение бензоксазиновых мономеров в 2022 году.

Бензоксазиновые мономеры классифицируются на специальные и коммерческие. В настоящее время коммерчески доступны бензоксазиновые мономеры на основе бисфенола A и анилина (BA-a) и 4,4'-диаминодифенилметана и фенола (P-ddm) от ведущих производителей, таких как Huntsman Advanced Materials (США), Henkel Corporation (Германия), Shikoku Chemical (Япония), Gurit (Швейцария) и др. [106].

Бензоксазиновые смолы от Huntsman Advanced Materials были впервые представлены еще в 1994 году, и в настоящее время они предлагают пять стандартных бензоксазиновых мономеров (BA-a, BF-a, TD-a, Boz-BP) как для промышленного, так и для академического использования под торговым названием ARALDITE MT. Кроме того, компания Huntsman Advanced Materials также представила жидкие бензоксазиновые смолы. Например, Development LMB 6659 является бензоксазиновой смолой на основе бисфенола F в 75 % растворе метилэтилкетона (MЭК), а Development LMB 10640 – бензоксазиновая смола на основе карданола. На рынке также представлены монофункциональные бензоксазиновые смолы or Huntsman Advanced Materials, например, RD 2007-027 и RD 2009-008, представляющие собой бензоксазиновые смолы на основе фенола с молекулярной массой 211 и 419, соответственно [107–109].

В 2015 году компания Huntsman Advanced Materials представила Araldite MT 35710 FST, бензоксазиновое связующее, не содержащее свободного фенола и галогенов и имеющее низкую вязкость, что позволяет обрабатывать его RTM-технологией. Состав связующего Araldite MT 35710 FST включает в себя дибензоксазины на основе бисфенола F и монобензоксазин на основе фенола в соотношении 1:1,375 [110].

Бензоксазиновые смолы Henkel Corporation под торговой маркой Epsilon имеют рабочую температуру около 150 °C. Epsilon 99110 компании Henkel разработан для широкого спектра применений при высоких температурах [106,108]. Henkel утверждает, что Epsilon 99120 представляет собой отвержденную бензоксазиновую смолу, а Epsilon 99900 является бензоксазиновым связующим, действующим как дополнительный отверждающий, формирующий и армирующий

агент. Кроме того, компании Henkel и Toho Tenax (Япония) разработали новые препреги на основе бензоксазиновой смолы, армированные углеродным волокном, для использования внутри самолетов. Бензоксазиновая смола Epsilon 99110 также использовалась в качестве твердого полимерного материала-предшественника для производства полибензоксазиновой пены с азодикарбонамидом в качестве химического вспенивателя. Сообщалось, что полученная полибензоксазиновая пена обладает хорошими механическими свойствами, подходящими для конструкционных применений, со значительным снижением веса [111,112].

Помимо Epsilon 99110, портфолио Henkel включает ряд бензоксазиновых связующих, подходящих как для технологии инжекции связующего (Henkel Loctite BZ 9110 AERO, BZ 9120 AERO, BZ 9130 AERO), так и для формования препрегов ПКМ (Henkel Loctite BZ 9703 AERO, BZ 9704 AERO, BZ 9705.2 AЭPO) [111,112].

Компания Composite Technology Development, Inc. (CTD) разработала целую серию связующих различного назначения на основе бензоксазинов (таблица 6).

Связующее	Описание
CTD-804	Бензоксазиновое связующее
CTD-813	Бензоксазиновое связующее для переработки методом RTM
CTD-813L	Бензоксазиновое связующее для переработки методом VARTM
CTD-851	Бензоксазиновое связующее быстрого отверждения с высокой T _g
CTD-852	Бензоксазиновое связующее, устойчивое к микротрещинам
CTD-858	Бензоксазиновое связующее, наполненное наноматериалами
CTD-861	Компонентная добавка к бензоксазиновому связующему
CTD-862	Бензоксазиновое связующее с улучшенными электрическими свойствами
CTD-870	Бензоксазиновое связующее с T _g = 160 °C
CTD-878	Бензоксазиновое связующее с T _g = 243 °C
CTD-879	Связующее на основе бензоксазина, эпоксидной и цианатэфирной смол с $T_g = 271 \ ^{\circ}\mathrm{C}$
CTD-880	Связующее на основе бензоксазина, эпоксидной и цианатэфирной смол с высокой T_g

Таблица 6 – Ассортимент бензоксазиновых связующих компании СТD

По заявлению производителя, связующие серии CTD-800 обладают низким дымовыделением, низкой токсичностью продуктов сгорания и другими преимуществами бензоксазинов, такими как повышенная износостойкость, низкая вязкость при температуре обработки, практически нулевая усадка, высокая адгезия к волокнам и наполнителям [113].

Связующие этой серии могут быть переработаны в ПКМ следующими методами: технология пропитки под давлением (RTM) и ее разновидность с предварительным вакуумированием связующего (VARTM), намотка с нитью (FW), литье с наполнителем или без него, вакуумная пропитка под давлением (VPI) [113].

Gurit занимается производством препрегов для интерьеров самолетов и инновационной авиационной промышленности с 1985 года. Gurit представляет PB1000 как новое поколение препрегов для интерьеров самолетов [106,114]. Эта бензоксазиновая смола соответствует экологическим стандартам, таким как AIRBUS AP2091. Кроме того, Gurit производит бензоксазиновую смолу марки PB1000-68-40, армированную препрегами из алюмо-боро-силикатных стекол. Материал был разработан для создания чрезвычайно легких композитных конструкций с высокими удельными механическими свойствами и высокими требованиями FST. Рабочая температура композиционного материала находится в диапазоне температур от -55 до 80 °C [115,116].

Shikoku Chemical Co. — одна из ведущих компаний по коммерциализации бензоксазиновых мономеров. Компания не только реализует бифункциональные бензоксазиновые смолы, но и торгует монофункциональными бензоксазиновыми смолами, в том числе P-а. Основными бифункциональными бензоксазинами, выпускаемыми Shikoku Chemical Corporation являются P-ddm, BA-m, BA-a [117].

2 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1 Исходные реагенты

о-Крезол (2-метилфенол) С7Н8О

Белые кристаллы. Мало растворим в воде, хорошо растворяется в этаноле, ацетоне, хлороформе и других органических растворителях. Окисляется при хранении и на воздухе. Продукт фирмы «Alpha Chemika», чистота 98,55 %, CAS № 95-48-7. Т_{пл} = 29,8 °C, Т_{кип} = 191 °C, M = 108,14 г/моль. Очищали вакуумной перегонкой.

п-Крезол (4-метилфенол) С7Н8О

Белые кристаллы. Мало растворим в воде, хорошо растворяется в этаноле, ацетоне, хлороформе и других органических растворителях. Окисляется при хранении и на воздухе. Продукт фирмы «Alpha Chemika», чистота 99 %, CAS N 106-44-5. $T_{пл} = 35,5$ °C, $T_{кип} = 201,9$ °C, M = 108,14 г/моль. Очищали вакуумной перегонкой.

2,4-диметилфенол С₈Н₁₀О

Прозрачная бесцветная или желтая жидкость. Мало растворим в воде, хорошо растворяется в этаноле, ацетоне, хлороформе и других органических растворителях. Продукт фирмы «Alpha Chemika», чистота 98 %, CAS № 105-67-9. $T_{пл} = 21 \text{ °C}, T_{кип} = 211 \text{ °C}, M = 122,17 \text{ г/моль}.$ Использовался без дополнительной очистки.

Анилин С₆Н₇N

Бесцветная жидкость с характерным запахом, плохо растворяется в воде, хорошо – в органических растворителях. Легко окисляется на свету и воздухе. Продукт фирмы «Русхим», CAS № 62-53-3. Т_{кип} = 184 °C, ρ = 1,0217 г/см³, M = 93,13 г/моль. Очищали перегонкой при атмосферном давлении и использовали в свежеперегнанном виде.

Фенол С₆Н₆О

Бесцветные кристаллы. Умеренно растворимы в воде, хорошо – в органических растворителях. Легко окисляется на свету и воздухе, приобретая розовую окраску; токсичен. Продукт фирмы «Русхим», CAS № 108-95-2. T_{пл} = 40,5 °C, T_{кип} = 181,7 °C, M = 94,11 г/моль. Очищали перегонкой при атмосферном давлении.

2,2-бис(4-гидроксифенил)пропан (бисфенол А) С15H16O2

Гранулы белого цвета. Мало растворим в воде, хорошо растворяется в этиловом спирте, ацетоне, бензоле. CAS № 80-05-7. М = 228,29 г/моль, T_{пл} = 156 °C. Использовался без дополнительной очистки.

4,4'-диаминодифенилметан С₁₃H₁₄N₂

Бесцветные кристаллы или светло-коричневые гранулы, канцероген, растворим в этаноле, бензоле, диэтиловом эфире, труднорастворим в воде. Продукт компании «Sigma-Aldrich», чистота 98 %, CAS № 101-77-9. М = 198,27 г/моль, $T_{nn} = 92$ °C. Использовался без дополнительной очистки.

3,4'-диаминодифенилметан С₁₃H₁₄N₂

Бесцветные кристаллы или светло-коричневые гранулы, канцероген, растворим в этаноле, бензоле, диэтиловом эфире, труднорастворим в воде. Продукт компании «Sigma-Aldrich», чистота 98 %, CAS № 19430-83-2. М = 198,27 г/моль, $T_{nn} = 88 - 89$ °C. Использовался без дополнительной очистки.

3,3'-диаминодифенилметан С₁₃H₁₄N₂

Бесцветные кристаллы или светло-коричневые гранулы, канцероген, растворим в этаноле, бензоле, диэтиловом эфире, труднорастворим в воде. Продукт компании «Sigma-Aldrich» чистота 98 %, CAS № 19471-12-6. М = 198,27 г/моль, $T_{nn} = 81 - 84$ °C. Использовался без дополнительной очистки.

Параформальдегид HO-(CH₂O)_n-H (n = 8 – 100) (параформ)

Белое гранулированное вещество с запахом формальдегида, канцероген, при нагревании растворяется в воде, но плохо - в ацетоне. Продукт компании «ERCROS», содержание основного вещества 91 %, CAS № 30525-89-4. M = 300 - 3000 г/моль, $T_{пл} = 150$ °C, $\rho = 1,42$ г/см³. Использовался без дополнительной очистки.

Безводный сульфат натрия Na₂SO₄

Белый порошок. Хорошо растворяется в воде. Продукт компании «Русхим», категория ЧДА, CAS № 7757-82-6. М = 142,04 г/моль, T_{пл} = 883°C, ρ = 2,68 г/см³. Использовался без дополнительной очистки.

Гидроксид натрия NaOH

Кристаллический порошок белого цвета, кристаллы твердые, не крошатся, легко растворимы в воде. Продукт компании «Русхим», категория ЧДА, САS № 1310-73-2. М = 39,997 г/моль, Т_{пл} = 323 °C, ρ = 2,13 г/см³. Использовался без дополнительной очистки.

Салициловый альдегид С6Н7О2 (2-гидроксибензальдегид)

Бесцветная жидкость с резким и фенольным запахом. Плохо растворяется в воде, хорошо растворим в органических растворителях. Продукт компании «Sigma-Aldrich», чистота 98 %, CAS № 90-02-8. М = 122,12 г/моль, Т_{кип} = 196 °C. Использовался без дополнительной очистки.

Растворители использовали в свежеперегнанном виде. Константы растворителей отвечали описанным литературным данным [118].

2.2 Методики синтезов бензоксазиновых мономеров

Синтез бис(4-(8-метил-2Н-бензо[е][1,3]оксазин-3(4Н)-ил)фенил)метана (оС-4,4'-d)

5 г (0,025 моль) 4,4'-диаминодифенилметана, 5,45 г (0,05 моль) *о*-крезола и 50 мл толуола в качестве растворителя загружали в одногорлую круглодонную колбу на 100 мл, снабженную магнитной мешалкой и обратным холодильником. Исходные реагенты растворяли при температуре 60 °C, затем в колбу загружали 3,495 г (0,116 моль) параформальдегида. Синтез вели в течение 8 часов при 85 °C. Затем колбу охлаждали до комнатной температуры, раствор продукта переносили в делительную воронку и промывали 1N-ым раствором гидроксида натрия для удаления непрореагировавшего *о*-крезола, затем промывали дистиллированной водой до нейтральной реакции. Промытый раствор продукта переносили в коническую колбу и добавляли безводный сульфат натрия в качестве осущителя. После чего фильтровали и переносили в круглодонную колбу. Толуол отгоняли на вакуум-роторном испарителе при температуре не выше 80 °C. Затем полученный бензоксазин сушили в вакуум-сушильном шкафу при температуре 60 °C до постоянной массы. Выход продукта составил 70 %.

Синтез бис(4-(6-метил-2Н-бензо[е][1,3]оксазин-3(4Н)-ил)фенил)метана (pC-4,4'-d)

5 г (0,025 моль) 4,4'-диаминодифенилметана, 5,45 г (0,05 моль) *n*-крезола и 50 мл толуола в качестве растворителя загружали в одногорлую круглодонную колбу на 100 мл, снабженную магнитной мешалкой и обратным холодильником. Исходные реагенты растворяли при температуре 60 °C, затем в колбу загружали 3,495 г (0,116 моль) параформальдегида. Синтез вели в течение 8 часов при 85 °C. Далее колбу охлаждали до комнатной температуры, отфильтровывали выпавший из раствора продукт, промывали его 1N-ым раствором гидроксида натрия для

удаления непрореагировавшего *n*-крезола, затем дистиллированной водой до нейтральной реакции. Полученный бензоксазиновый мономер сушили в вакуумсушильном шкафу при температуре 60 °C до постоянной массы. После чего перекристаллизовывали из хлороформа. Выход продукта составил 8,1 г (75 %).

Синтез бис(4-(6,8-диметил-2Н-бензо[е][1,3]оксазин-3(4Н)-ил)фенил)метана (24Х-4,4'-d)

5 моль) 4,4'-диаминодифенилметана, 6,16 г (0,05 моль) Г (0.025)2,4-диметилфенола и 50 мл толуола в качестве растворителя загружали в одногорлую круглодонную колбу на 100 мл, снабженную магнитной мешалкой и обратным холодильником. Исходные реагенты растворяли при температуре 60 °С, затем в колбу загружали 3,495 г (0,116 моль) параформальдегида. Синтез вели в течение 8 часов при 85 °C. Затем колбу охлаждали до комнатной температуры, раствор продукта переносили в делительную воронку и промывали 1N-ым раствором гидроксида натрия для удаления непрореагировавшего 2,4-диметилфенола, затем промывали дистиллированной водой до нейтральной реакции. Промытый раствор продукта переносили в коническую колбу и добавляли безводный сульфат натрия в качестве осушителя. После чего фильтровали и переносили в круглодонную колбу. Толуол отгоняли на вакуум-роторном испарителе при температуре не выше 80 °С. Затем полученный бензоксазин сушили в вакуум-сушильном шкафу при температуре 60 °С до постоянной массы. Выход продукта составил 70 %.

Синтез 6,6'-(пропан-2,2-диил)бис(3-фенил-3,4-дигидро-2Нбензо[е][1,3]оксазина) (ВА-а)

10 г (0,107 моль) анилина, 12,25 г (0,053 моль) бисфенола А и 100 мл толуола в качестве растворителя загружали в одногорлую круглодонную колбу на 250 мл, снабженную магнитной мешалкой и обратным холодильником. Исходные реагенты растворяли при температуре 60 °C, после чего в реакционную смесь загружали 14,88 г (0,496 моль) параформальдегида. Синтез вели в течение 8 часов при температуре 85 °C. Затем колбу охлаждали до комнатной температуры, раствор продукта переносили в делительную воронку и промывали 1N-ым раствором гидроксида натрия для удаления непрореагировавшего бисфенола A, затем промывали дистиллированной водой до нейтральной реакции. Промытый раствор продукта переносили в коническую колбу и добавляли безводный сульфат натрия в качестве осушителя. После чего фильтровали и переносили в круглодонную колбу. Толуол отгоняли на вакуум-роторном испарителе при температуре не выше 80 °C. Затем полученный бензоксазин сушили в вакуум-сушильном шкафу при температуре 60 °C до постоянной массы. Выход продукта составил 68 %.

Синтез бис(4-(2Н-бензо[е][1,3]оксазин-3(4Н)-ил)фенил)метана (Р-4,4'-d)

В одногорлую круглодонную колбу на 500 мл, снабженную магнитной мешалкой, загружали 15 г (0,076 моль) 4,4'-диаминодифенилметана, 18,61 г (0,151 моль) салицилового альдегида и 400 мл изопропанола в качестве растворителя. Реакцию вели 24 часа при перемешивании при комнатной температуре. Продукт отфильтровывали, промывали изопропанолом и сушили в вакуум-сушильном шкафу при температуре 60 °C до постоянной массы. После чего полученное основание Шиффа перекристаллизовывали из толуола. Продукт представляет собой жёлтые игольчатые кристаллы. Выход составил 30,11 г (98 %).

Полученное основание Шиффа восстанавливали боргидридом натрия. Для этого в круглодонную колбу объемом 500 мл, снабженную магнитной мешалкой и обратным холодильником, загружали 13,6 г (0,03 моль) основания Шиффа и 240 мл этанола в качестве растворителя. Боргидрид натрия добавляли порционно каждые 2 часа, четырьмя порциями по 1,27 г (0,037 моль). Реакцию вели в течение 8 часов. Раствор продукта высаждали в воду, отфильтровывали, после чего промывали дистиллированной водой до нейтральной реакции. Продукт сушили в вакуумсушильном шкафу при температуре 60 °С до постоянной массы. Выход составил 12,36 г (90 %).

7 г (0,017 моль) восстановленного основания Шиффа загружали в круглодонную колбу объемом 250 мл, снабженную магнитной мешалкой и обратным холодильником. Загружали 1,18 г (0,039 моль) параформальдегида и 100 мл хлороформа. Реакцию вели 6 часов при температуре кипения растворителя (66 °C). Затем колбу охлаждали до комнатной температуры, раствор продукта переносили в делительную воронку и промывали 1N-ым раствором гидроксида натрия для удаления непрореагировавшего восстановленного основания Шиффа, затем дистиллированной водой до нейтральной реакции. Раствор переносили в коническую колбу и сушили над безводным сульфатом натрия для удаления воды, затем раствор фильтровали, переносили в круглодонную колбу и отгоняли растворитель на вакуум-роторном испарителе при температуре не выше 50 °C, после чего сушили в вакуум-сушильном шкафу при 50 °C до постоянной массы. Затем, продукт дважды перекристаллизовывали из ацетона. Продукт представляет собой белые кристаллы. Выход составил 6,02 г (81,3 %).

Синтез 3-(3-(4-(2Н-бензо[е][1,3]оксазин-3(4Н)-ил)бензил)фенил)-3,4-дигидро-2Н-бензо[е][1,3]оксазина (Р-3,4'-d)

10 г (0,05 моль) 3,4'-диаминодифенилметана и 12,32 г (0,1 моль) салицилового альдегида и 300 мл изопропанола в качестве растворителя загружали в одногорлую круглодонную колбу на 500 мл, снабженную магнитной мешалкой. Реакцию вели 24 часа при перемешивании при комнатной температуре. Продукт отфильтровывали, промывали изопропиловым спиртом и сушили в вакуум-сушильном шкафу при температуре 60 °C до постоянной массы. После чего полученное основание Шиффа перекристаллизовывали из смеси изопропилового спирта с ацетоном. Полученный продукт представляет собой жёлтые игольчатые кристаллы. Выход составил 20,1 г (98 %).

Полученное основание Шиффа восстанавливали боргидридом натрия. Для этого в круглодонную колбу объемом 250 мл, снабженную магнитной мешалкой и обратным холодильником, загружали 5 г (0,01 моль) основания Шиффа, 125 мл этанола в качестве растворителя. Боргидрид натрия добавляли порционно каждые 2 часа, четырьмя порциями по 0,93 г (0,098 моль). Реакцию вели в течение 8 часов. Раствор продукта высаждали в воду, отфильтровывали, после чего промывали дистиллированной водой до нейтральной реакции. Продукт сушили в вакуумсушильном шкафу при температуре 50 °C до постоянной массы. Выход составил 4,29 г (85 %).

Восстановленное основание Шиффа, в количестве 4 г (0,01 моль) загружали в круглодонную колбу объемом 100 мл, снабженную магнитной мешалкой и обратным холодильником. Загружали 0,58 г (0,02 моль) параформальдегида и 60 мл хлороформа. Реакцию вели 6 часов при температуре кипения растворителя (66 °C). Затем колбу охлаждали до комнатной температуры, раствор продукта переносили в делительную воронку и промывали 1N-ым раствором гидроксида натрия для удаления непрореагировавшего восстановленного основания Шиффа, затем дистиллированной водой до нейтральной реакции. Раствор переносили в коническую колбу и сушили над безводным сульфатом натрия для удаления воды, затем раствор фильтровали, переносили в круглодонную колбу и отгоняли растворитель на вакуум-роторном испарителе при температуре не выше 50 °C, после чего сушили в вакуум-сушильном шкафу при 50 °C до постоянной массы. Т Продукт представляет собой белые кристаллы. Выход составил 3,43 г (81 %).

Синтез бис(3-(2Н-бензо[е][1,3]оксазин-3(4Н)-ил)фенил)метана (Р-3,3'-d)

В одногорлую круглодонную колбу на 500 мл, снабженную верхнеприводной мешалкой, загружали 5 г (0,025 моль) 3,3'-диаминодифенилметана и 6,16 г (0,05 моль) салицилового альдегида и 300 мл этанола в качестве растворителя. Реакцию вели 24 часа при перемешивании при комнатной температуре. Затем этанол отгоняли на вакуум-роторном испарителе при температуре не выше 50 °C.

После чего полученное основание Шиффа перекристаллизовывали из смеси изопропилового спирта с ацетоном. Полученный продукт представляет собой жёлтые игольчатые кристаллы. Выход составил 9,74 г (95 %).

Полученное основание Шиффа восстанавливали боргидридом натрия. Для этого в круглодонную колбу объемом 500 мл, снабженную магнитной мешалкой и обратным холодильником, загружали 8 г (0,02 моль) основания Шиффа и 240 мл этанола в качестве растворителя. Боргидрид натрия добавляли порционно каждые 2 часа, четырьмя порциями по 1,49 г (0,04 моль). Реакцию вели в течение 8 часов. Раствор продукта высаждали в воду, отфильтровывали, после чего промывали водой до нейтральной реакции. Продукт сушили в вакуум-сушильном шкафу при температуре 50 °C до постоянной массы. Выход составил 6,46 г (80 %).

Восстановленное основание Шиффа, в количестве 5 г (0,012 моль) загружали в круглодонную колбу объемом 100 мл, снабженную магнитной мешалкой и обратным холодильником. Загружали 0,768 г (0,026 моль) параформальдегида и 60 мл хлороформа. Реакцию вели 6 часов при температуре кипения растворителя (66 °C). Далее колбу охлаждали до комнатной температуры, реакционную массу переносили в делительную воронку и промывали 1N-ым раствором гидроксида натрия для удаления непрореагировавшего восстановленного основания Шиффа, затем дистиллированной водой до нейтральной реакции. Раствор переносили в коническую колбу и сушили над безводным сульфатом натрия для удаления воды, затем раствор фильтровали, переносили в круглодонную колбу и отгоняли растворитель на вакуум-роторном испарителе при температуре не выше 50 °C, после чего сушили в вакуум-сушильном шкафу при 50 °C до постоянной массы. Затем, продукт дважды перекристаллизовывали из ацетона. Продукт представляет собой белые кристаллы. Выход составил 4,23 г (80 %).

2.3 Методы анализа

Для исследования химического строения бензоксазиновых мономеров применяли ЯМР-спектроскопию. ¹Н и ¹³С ЯМР спектры регистрировали на приборе

Вruker AV600 на рабочей частоте 600 и 161 МГц соответственно. В качестве растворителей использовали дейтерированные хлороформ (CDCl₃) и диметилсульфоксид (d-DMSO). Химический сдвиг сигналов рассчитывали относительно стандарта – тетраметилсилана.

Для изучения процесса отверждения, определения температуры стеклования и остаточного тепла предварительно отвержденных образцов использовался дифференциальный сканирующий калориметр DSC 214 Polyma (Netzsch, Зельб, Германия). Все испытания проводились в атмосфере азота при скорости потока 40 мл/мин в диапазоне температур 50 – 350 °C со скоростью нагрева 10 °C/мин для всех образцов с примененной калибровкой чувствительности и температуры. Для всех измерений использовали алюминиевый тигль Concavus® с перфорированной и прессованной крышкой. Размер отверстия составлял примерно 0,7 мм. Масса образцов колебалась от 5 до 10 мг. Для обработки данных использовали программное обеспечение Proteus Thermal Analysis версии 8.0.2 (Netzsch, Зельб, Германия).

Термогравиметрический анализ (ТГА) проводили на синхронном термоанализаторе NETZSCH STA 449 F3 Jupiter в атмосфере азота и воздуха при скорости потока 70 и 200 мл/мин соответственно в диапазоне температур 40 – 900 °C со скоростью нагрева 10 °C/мин. Для всех измерений использовали корундовые тигли с крышкой. Масса образцов колебалась от 5 до 10 мг.

Температуры стеклования полученных полибензоксазинов и температурные зависимости модулей накопления (Е') и потерь (Е") были определены в соответствии с процедурой, указанной в ASTM D7028-07, с использованием динамического механического анализатора DMA GABO Eplexor 25N (Netzsch, Зельб, Германия). Измерения проводились в режиме трехточечного изгиба в диапазоне температур от 30 до 200 °C, при скорости нагрева 2 °C/мин, статической деформации 10%, частоте колебаний 1 Гц и амплитуде деформации 8 %.

Инфракрасная спектроскопия с Фурье-преобразованием применялась для исследования химического строения бензоксазиновых мономеров и полимеров. ИК-спектры снимали на ИК-Фурье спектрометре фирмы «Nicolet» (США) «IR-

380» в области от 400 до 4000 см⁻¹ с разрешением 2 см⁻¹ при комнатной температуре в режиме просвечивания из таблеток в КВг. Для обработки спектров использовали программное обеспечение «OMNIC» компании «Thermo Scientific».

Спектры ЯМР на ядрах ¹³С с вращением под «магическим» углом (ВМУ) твёрдых образцов полибензоксазинов были зарегистрированы на спектрометре BRUKER AVANCE-II 400 WB на частотах 400,13 (1H) и 100,13 (13C) МГц с использованием 4 мм H/X/Y MAS WVT датчика (скорость вращения образца - 10 кГц). Использовалась 4-импульсная методика TOSS с кросс-поляризационной последовательностью импульсов RAMP (T/tr = 2,2412), время контакта – 2 мс, задержка рецикла – 1,5 с, 8-шаговый фазовый цикл. Для мощной развязки протонов использовалась последовательность SW-TPPM ($\tau = 8$ мкс, $\varphi = 15^{\circ}$). Для всех образцов после преобразования Фурье применялось уширение линии 100 Гц.

MALDI-TOF масс-спектрометрия применялась для идентификации бензоксазиновых мономеров. Масс-спектры регистрировали на спектрометре MicroFlex LRF фирмы «Bruker». В качестве матрицы использовали 3-гидроксипиколиновую кислоту (HPA).

Гель-проникающие хроматограммы для образцов были получены на приборе GPC, состоящем из насоса Waters 515 HPLC, автосамплера Waters 717plus и детектора светорассеяния Polymer Laboratories PL-ELS 1000 с использованием трех колонок PLGel Mixed-B (7,5×300 мм с размером частиц 10 мкм). Подвижная фаза: $T\Gamma\Phi/TMЭДА$ (100:1 об./об.) при скорости потока 1 мл/мин, $V_0 = 15$ мл, $V_{полное} = 28$ мл. Для калибровки использовались стандарты полистирола, произведенные Polymer Standards Service GmbH (ReadyCal Kit Poly(styrene), Mp = 7520; 2570; 1210; 579; 246; 127; 67; 34,8; 17,8; 8,4; 3,42 и 1,62 кДа).

Для оценки зависимости энергии активации от степени превращения были использованы рекомендации Комитета по кинетике ICTAC [119]. Значения степени конверсии, α , были определены как частичные площади $Q(t)/Q_{total}$ пиков ДСК, связанных с процессом отверждения, где Q(t) – текущее изменение температуры

до определенного момента времени, *t*, а Q_{total} – общая теплота процесса отверждения.

Зависимость энергии активации, E_{α} , от степени превращения, α , была оценена с использованием изоконверсионного интегрального метода Вязовкина [120]. Процедура оценки зависимости E_{α} от α заключается в нахождении минимума функции

$$\Psi(E_{\alpha}) = \sum_{i=1}^{n} \sum_{j \neq i}^{n} \frac{J(E_{\alpha}, T_{\alpha,i})\beta_{j}}{J(E_{\alpha}, T_{\alpha,j})\beta_{i}},$$
(1)

где

$$J(E_{\alpha}, T_{\alpha}) = \int_{T_{\alpha-\Delta\alpha}}^{T_{\alpha}} exp\left(-\frac{E_{\alpha}}{RT}\right) dT$$
(2)

является интегралом температуры [121]. Интегрирование выполняется по малым интервалам либо температуры ΔT , либо времени Δt , которые соответствуют малым интервалам $\Delta \alpha$, которые были приняты за 0,025. Минимизация (1) повторяется для каждого значения α , чтобы получить зависимость E_{α} от α .

Процедура минимизации была выполнена в программном обеспечении MATLAB с использованием метода прямого симплексного поиска Нелдера-Мида (функция fminsearch). Численный расчет температурного интеграла (2) был выполнен с использованием глобальной адаптивной квадратуры и допусков на ошибки по умолчанию: абсолютный допуск на ошибки имел значение 1·10⁻¹⁰, а относительный допуск на ошибки имел значение 1·10⁻⁶.

3 ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Несмотря на большое количество работ, посвященных изучению механизма полимеризации бензоксазиновых мономеров, на сегодняшний день он остается не до конца понятен. Процессы полимеризации и химическое строение полимеров в основном изучались на модельных монобензоксазинах, которые в силу своих особенностей, в первую очередь неспособностью образования полимеров с хорошими механическими свойствами, имеют ограниченное применение в качестве компонентов связующих для ПКМ и других материалов.

Исследований, посвященных дифункциональным бензоксазинам существенно меньше, в то время как именно они являются промышленно применимыми и установление точного механизма их полимеризации, а также химической структуры позволит более эффективно выбирать рецептуру связующих и каталитические системы.

Также стоит отметить, что химическое строение полибензоксазинов существенно зависит от условий полимеризации (температуры и времени отверждения, применяемого катализатора, растворителей) и строения исходных мономеров. Варьируя эти параметры, можно получать полибензоксазины различного строения с различными термомеханическими характеристиками. В данной работе были исследованы процессы, протекающие при термической полимеризации и химическая структура полибензоксазинов, образующаяся при температурах 180 – 220 °C.

Для исследования химического строения и закономерностей образования полидибензоксазинов необходимо было синтезировать ряд дифункциональных бензоксазиновых мономеров. Бензоксазиновые мономеры на основе 4,4'-диаминодифенилметана и фенола (два реакционных положения), крезолов (одно реакционное положение), 2,4-диметилфенола (реакционные положения заблокированы) (рисунок 3а) были выбраны с целью сравнения их реакционной способности, образующейся химической структуры полимеров и установления возможности протекания полимеризации по ариламинному фрагменту.

60

Рисунок 3 – Бензоксазиновые мономеры на основе а) 4,4'-диаминодифенилметана и гомологов фенола, б) изомеров диаминодифенилметана и фенола, в) бисфенола А и анилина

В свою очередь бензоксазины на основе изомеров диаминодифенилметана (рисунок 3б) были выбраны для исследования с целью выявления влияния положения аминогрупп в исходном диамине на полимеризационную способность мономеров и термомеханические характеристики получаемых полибензоксазинов. Исследование приведенных мономеров является логичным завершением к работам [122], в которых изучалась зависимость строения бензоксазиновых мономеров и термомеханические карактеристики бензоксазинов и термомеров и зависимость строения бензоксазиновых мономеров и термомеханические свойств полимеров на основе изомеров бисфенола F.

Бензоксазиновый мономер ВА-а (рисунок 3в), который на сегодняшний день является самым востребованным коммерческим мономером был выбран с целью выявления различий в образующейся химической структуре полидибензоксазинов на основе диаминов и дифенолов.

3.1 Синтез и химическое строение бензоксазиновых мономеров

Бензоксазиновые мономеры на основе 4,4'-диаминодифенилметана и *n*-крезола (pC-4,4'-d), *o*-крезола (oC-4,4'-d), 2,4-диметилфенола (24X-4,4'-d), а также бисфенола A и анилина (BA-а) были получены по одностадийной методике в среде толуола, приведенной на схемах (41), (42).

В свою очередь, бензоксазиновые мономеры на основе салицилового альдегида и 4,4'-диаминодифенилматана (P-4,4'-d), 3,4'-диаминодифенилметана (P-4,4'-d) и 3,3'-диаминодифенилметана (P-3,3'-d) были получены по трехстадийной методике, заключающейся в образовании оснований Шиффа на первой стадии, последующем их восстановлении и образовании оксазиновых циклов на заключительном этапе синтеза (43). Данная методика позволяет получать бензоксазиновые мономеры высокой чистоты в кристаллическом виде, что особенно актуально при синтезе новых бензоксазинов, описания их строения и свойств.

Полученные на первой стадии взаимодействием 3,3'-, 3,4'-И 4,4'-диаминодифенилметана и салицилового основания Шиффа альдегида (Sh-3,3'-d, Sh-3,4'-d и Sh-4,4'-d соответственно) были охарактеризованы ¹Н и ¹³С ЯМР спектроскопией. ¹Н ЯМР спектр Sh-3,3'-d приведен на рисунке 4 и полностью согласуется с предполагаемым строением данного соединения. Характерный синглет при 8,62 м.д. принадлежит атомам протонов –CH=N– групп. Химический сдвиг протонов ОН-групп наблюдается при 13,25 м.д.

На ¹³С ЯМР спектре Sh-3,3'-d (рисунок 5) характерный сигнал атомов углерода –CH=N– групп находится в области 163 м.д. Резонанс при 161 м.д. относится к ароматическому углероду, связанному с атомом кислорода ОН-группы. Сигнал метиленового мостика диаминодифенилметана находится в области 42 м.д. Сигналы при 117,4; 119 и 122,1 м.д. принадлежат ароматическим углеродам, находящимся в *орто*-положениях относительно атомов кислорода и азота соответственно.

Рисунок 5 – 13 С ЯМР спектр Sh-3,3'-d

Аналогичные результаты были получены и для основания Шиффа на основе 3,4'-диаминодифенилметана (таблица 7). ¹Н и ¹³С ЯМР спектры Sh-3,4'-d приведены в приложении А.

Основание Шиффа	Значения химического сдвига протонов бн (м.д.)		Значения химического сдвига углеродов δ _C (м.д.)		
	-CH=NС _{аром} ОН		-CH=NC _{apom} OF		
Sh-3,3'-d	8,62	13,25	162,78	161,30	
Sh-3,4'-d	8,62–8,63	13,27–13,32	162,27–162,75	161,28–161,30	

Таблица 7 – Результаты ¹Н и ¹³С ЯМР спектроскопии оснований Шиффа

Поскольку основание Шиффа на основе 4,4'-диаминодифенилметана плохо растворимо в доступных дейтерированных растворителях, его структура была подтверждена ¹³С ЯМР спектроскопией твердого тела с вращением под «магическим» углом (рисунок 6) и ИК-спектроскопией (рисунок 7).

На ИК-спектре Sh-4,4'-d наблюдаются характерные валентные колебания C=N связи при 1620 см⁻¹ и валентные колебания связи С–О при 1284 см⁻¹.

Рисунок 7 – ИК-спектр Sh-4,4'-d

На второй стадии синтеза осуществлялось восстановление оснований Шиффа боргидридом натрия в среде этанола. Полученные соединения охарактеризованы ¹Н и ¹³С ЯМР спектроскопией. На рисунке 8 представлен ¹Н ЯМР спектр восстановленного основания Шиффа на основе 3,3'-диаминодифенилметана (М-3,3'-d). Сигнал метиленового мостика диаминодифенилметана находится в области 3,65 м.д., а характерный сигнал протонов NH-групп – в области 5,74 м.д. Химический сдвиг протонов OH-групп находится при 9,41 м.д.

На ¹³С ЯМР спектре восстановленного основания Шиффа М-3,3'-d (рисунок 9) также наблюдаются сигналы метиленового мостика диаминодифенилметана в области 41,53 м.д., сигнал углеродов –СН₂–NH– групп при 41,93 м.д. Химический сдвиг ароматических углеродов, связанных с атомом кислорода ОН-группы находится в области 155 м.д.

Рисунок 8 – ¹Н ЯМР спектр восстановленного основания Шиффа (М-3,3'-d)

Рисунок 9 – ¹³С ЯМР спектр восстановленного основания Шиффа (М-3,3'-d)

Аналогичные результаты получены и для восстановленных оснований Шиффа на основе 3,4'- и 4,4'-диаминодифенилметана (М-3,4'-d и М-4,4'-d соответственно) (таблица 8). ¹Н и ¹³С ЯМР спектры этих соединений представлены в приложении Б и В соответственно.

Таблица 8 – Результаты ¹Н и ¹³С ЯМР спектроскопии восстановленных оснований Шиффа

Восстановленные основания	Значения химического сдвига протонов			Значения химического сдвига углеродов δ _C (м.д.)	
Шиффа	-CH ₂ -N-	-NH-	-СаромОН	CH2N	-СаромОН
M-3,3'-d	4,21–4,22	5,74	9,41	41,93	154,87
M-3,4'-d	4,22	5,72–5,78	9,43	41,54–41,76	154,96–154,97
M-4,4'-d	4,13	5,63	9,36	41,84	154,88

На заключительном этапе осуществлялась конденсация восстановленных оснований Шиффа с параформальдегидом в среде хлороформа. Все полученные

бензоксазиновые мономеры были дважды перекристаллизованы из ацетона, а их химическое строение охарактеризовано ¹Н и ¹³С ЯМР спектроскопией.

На ¹Н ЯМР спектре Р-3,3'-d (рисунок 10) наблюдаются три синглета при 5,34; 4,60 и 3,91 м.д., принадлежащие протонам метиленовых групп –O–CH₂–N–, Ar–CH₂–N– и Ar–CH₂–Ar соответственно.

На ¹³С ЯМР спектре Р-3,3'-d, представленном на рисунке 11, характерные сигналы атомов углерода оксазиновых циклов Ar-CH₂-N- и -O-CH₂-N- находятся при 50,45 и 79,57 м.д. соответственно. Сигнал при 42,30 м.д. принадлежит углероду метиленового мостика диаминодифенилметана.

Вышеописанные характерные сигналы оксазиновых циклов присутствуют также и на всех остальных ¹Н и ¹³С ЯМР спектрах, синтезированных бензоксазиновых мономеров (приложения Г – К). Значения их химических сдвигов протонов и углеродов представлены в таблице 9.

Рисунок 10 – ¹Н ЯМР спектр Р-3,3'-d

Рисунок 11 – ¹³С ЯМР спектр Р-3,3'-d

Таблица 9 – Результаты ¹Н и ¹³С ЯМР спектроскопии синтезированных бензоксазиновых мономеров.

Бензоксазин	Значения химического сдвига протонов δ _н (м.д.)			Значения химического сдвига углеродов δ _C (м.д.)		
	-O-CH2-N-	Ar-CH ₂ -N-	Ar-CH2-Ar	-O-CH2-N-	Ar-CH2-N-	Ar–CH ₂ –Ar
P-3,3'-d	5,34	4,60	3,91	79,57	50,45	42,30
P-3,4'-d	5,33–5,35	4,59 – 4,61	3,86	79,59–79,85	50,44–50,63	41,34
P-4,4'-d	5,34	4,60	3,83	79,94	50,69	40,56
oC-4,4'-d	5,42	4,64	3,90	79,85	50,68	40,49
pC-4,4'-d	5,35	4,60	3,89	79,87	50,66	40,49
24X-4,4'-d	5,38	4,59	3,88	79,71	50,59	40,36
BA-a	5,25	4,48	-	78,73	49,99	-

3.2 Термомеханические характеристики бензоксазиновых мономеров и полимеров

Полимеризационная способность полученных бензоксазиновых мономеров на основе изомеров диаминодифенилметана P-3,3'-d, P-3,4'-d, P-4,4'-d была охарактеризована методом ДСК при скорости нагрева 10 К/мин. На кривых отверждения (рисунок 12) в ряду Р-4,4'-d, Р-3,4'-d, Р-3,3'-d наблюдается снижение температур плавления, что связано со стерическими особенностями молекул. В отличие от бензоксазинов на основе 2,2'-, 2,4'- и 4,4'-изомеров бисфенола F (рисунок 13) [122], разница в температурах отверждения Р-3,3'-d, Р-3,4'-d, Р-4,4'-d практически отсутствует (таблица 10). Также стоит отметить разницу в теплоте полимеризации: для бензоксазинов на основе изомерных дифенолов теплота полимеризации ниже (200 – 300 Дж/г) [122] по сравнению с бензоксазинами на диаминодифенилметана (360 380 основе изомеров _ Дж/г). Из всего вышеизложенного можно предположить, ЧТО закономерности процесса полимеризации дибензоксазинов в большей степени определяются строением фенольного фрагмента, поскольку оксазиновый цикл непосредственно связан с фенольным бензольным кольцом, что позволяет его электронным эффектам в большей степени влиять на процесс полимеризации.

Рисунок 12 – Кривые отверждения Р-3,3'-d, Р-3,4'-d, Р-4,4'-d

Рисунок 13 – Бензоксазиновые мономеры на основе а) 4,4'-, б) 2,4'- и в) 2,2'-

бисфенола F
Таблица 10 – Результаты дифференциальной сканирующей калориметрии бензоксазиновых мономеров на основе изомеров диаминодифенилметана P-3,3'-d, P-3,4'-d, P-4,4'-d

Бензоксазин Температура плавления, °С		Температура стеклования, °С	Температурные характеристики экзотермы отверждения, °С			Теплота отверждения, Дж/г
			начало	пик	конец	
P-4,4'-d	130	182	258	262	265	360
P-3,4'-d	93	195	264	265	268	380
P-3,3'-d	77	205	263	264	266	380

В процессе отверждения бензоксазинов различной химической структуры выделяют определенные стадии. Например, в работах А. Ручигая и др. [123,124] выделяют стадию с автоускорением, за которой следует стадия, контролируемая диффузионными ограничениями. Однако важным отличием бензоксазинов в данном исследовании является наличие на кривых ДСК одного пика отверждения (рисунок 12), что не позволяет в явном виде выделить несколько стадий По этой полимеризации. причине процесс отверждения полученных бензоксазиновых мономеров также исследовался метолом ЛСК R неизотермическом режиме при трех постоянных скоростях нагрева 5, 10 и 20 К/мин для получения зависимостей изоконверсионной энергии активации Е_α от степени конверсии (степени отверждения), представленных на рисунке 14, которые практически совпадают для всех мономеров. Рассчитанные зависимости энергии активации от степени превращения однозначно свидетельствуют о сложности бензоксазинов процесса отверждения на основе изомерных диаминодифенилметанов.

На полученных зависимостях можно выделить три основные области. Среднее значение энергии активации для первой стадии ($\alpha < 0,3$) составляет ~ 110 кДж/моль, предполагается, что это медленный некаталитический процесс раскрытия оксазиновых циклов. На второй стадии ($0,3 < \alpha < 0,8$) энергия активации существенно уменьшается до значения ~ 60 кДж/моль, что соответствует автокаталитической стадии, обусловленной образованием гидроксильных групп, ускоряющих дальнейшую полимеризацию. На третьей стадии наблюдается резкое увеличение значений энергии активации из-за диффузионных ограничений. Замедление диффузионных процессов обусловлено образованием трехмерных сшитых структур, которые характеризуются пониженной подвижностью. Энергия активации полимеризации убывает в ряду P-3,4'-d > P-4,4'-d > P-3,3'-d в интервале конверсий от 30 до 75 %, а свыше этого диапазона различие между P-3,3'-d и P-4,4'- d нивелируется, а для P-3,4'-d остается выше последних на 5 – 10 кДж/моль.

Рисунок 14 – Зависимость энергии активации от конверсии бензоксазиновых мономеров P-4,4'-d, P-3,4'-d, P-3,3'-d

После отверждения P-3,3'-d, P-3,4'-d и P-4,4'-d были определены температуры стеклования соответствующих полибензоксазинов (рисунок 15). Интересной особенностью является рост температуры стеклования в ряду poly(P-4,4'-d), poly(P-3,4'-d) и poly(P-3,3'-d) поскольку в более ранних работах, направленных на изучение влияния изомерии ароматических аминов на свойства различных реактопластов, наблюдалась противоположная тенденция. Так, в работах [125,126],

где изучались свойства полиимидов и полиаспартимидов на основе 3,3'-, 3,4'- и 4,4'-диаминодифенилметана и других изомерных ароматических диаминов, наиболее высокая температура стеклования наблюдалась для всех паразамещенных полимеров. В работе М. Каушика [127] аналогичная тенденция наблюдалась при отверждении эпоксидных 3.3'смол И 3,4'-диаминодифенилсульфоном. Полученные результаты подтверждают нетипичную зависимость температуры стеклования полибензоксазинов OT положения функциональных групп в исходных диаминах и дифенолах, описанную в работе Дж. Лю и Х. Ишиды [122], где изучалось влияние относительного расположения фенольных групп бисфенола F на свойства полибензоксазинов.

Рисунок 15 – Кривые ДСК полибензоксазинов poly(P-3,3'-d), poly(P-3,4'-d), и poly(P-4,4'-d)

О термической стабильности полибензоксазинов poly(P-3,3'-d), poly(P-3,4'-d), и poly(P-4,4'-d) судили по результатам термогравиметрического анализа, который проводили в атмосфере азота и воздуха. На рисунках 16 и 17 приведены кривые потери массы полученных полибензоксазинов в атмосфере азота. 5%-ая и 10%-ая потери массы всех исследованных образцов находятся в диапазоне от 367 °C до 417 °C, причем полибензоксазин poly(P-3,4'-d) обладает наибольшей термостойкостью.

Рисунок 16 – Кривые ТГА полибензоксазинов poly(P-3,3'-d), poly(P-3,4'-d), и poly(P-4,4'-d) в атмосфере азота

Рисунок 17 – Дифференциальные кривые ТГА полибензоксазинов poly(P-3,3'-d), poly(P-3,4'-d), и poly(P-4,4'-d) в атмосфере азота

Однако в атмосфере воздуха наибольшую термическую стабильность продемонстрировал полибензоксазин poly(P-4,4'-d). Как видно на рисунках 18 и 19, кривые потери массы всех полибензоксазинов в атмосфере воздуха имеют двухступенчатый характер. Дифференциальные кривые TГА (рисунок 19) показывают два пика потери массы в диапазоне температур от 350 °C до 500 °C и от 600 °C до 750 °C соответственно. Первый пик потери массы связан с деструкцией основной полимерной цепи. Однако наличие второго пика при температурах от 600 °C до 750 °C, вероятно, соответствует процессу термического окисления кокса, образовавшегося на первой стадии, с образованием газообразных оксидов [17,128,129]. Результаты термогравиметрического анализа обобщены в таблице 11.

Рисунок 18 – Кривые ТГА полибензоксазинов poly(P-3,3'-d), poly(P-3,4'-d), и poly(P-4,4'-d) в атмосфере воздуха

Рисунок 19 – Дифференциальные кривые ТГА полибензоксазинов poly(P-3,3'-d), poly(P-3,4'-d), и poly(P-4,4'-d) в атмосфере воздуха

Таблица 11 – Результаты ТГА полибензоксазинов poly(P-3,3'-d), poly(P-3,4'-d) и poly(P-4,4'-d)

ЗИН	Азот			Воздух				
бензокса	Температуры 5 %-ой и 10 %-ой потери массы, °С		Выход кокса (%)		Температуры 5 %-ой и 10 %-ой потери массы, °С		Выход кокса (%)	
Поли	T _{5%}	T _{10%}	800 °C	900 °C	T _{5%}	T _{10%}	800 °C	900 °C
poly(P-3,3'-d)	367	384	45	42	388	397	5	5
poly(P-3,4'-d)	390	417	52	51	417	425	1	1
poly(P-4,4'-d)	384	412	58	58	452	465	9	9

Также методом ДМА были изучены вязкоупругие свойства сшитых полибензоксазинов. На рисунке 20 представлены температурные зависимости модулей упругости (Е') для полибензоксазинов poly(P-3,3'-d), poly(P-3,4'-d) и poly(P-4,4'-d).

Рисунок 20 – Температурная зависимость модуля упругости полибензоксазинов poly(3,3'-d), poly(3,4'-d), и poly(4,4'-d)

Полимеры существенно различаются по жесткости в стеклообразном состоянии. Так, модуль упругости Е' при комнатной температуре составляет 3,3; 1,9 и 2,6 ГПа для полибензоксазинов poly(P-3,3'-d), poly(P-3,4'-d), и poly(P-4,4'-d) соответственно. Однако, все три полимера характеризуются сопоставимой плотностью сшивки.

Плотность сшивки полученных полибензоксазинов рассчитывали по уравнению (3) в соответствии с исследованием [130]. Приведенное уравнение было предложено Нильсеном и Ланделем для описания приблизительной зависимости между модулем упругости в высокоэластическом состоянии и плотностью сшивки.

$$log\left(\frac{E'_e}{3}\right) = 7.0 + 293(\rho_x) \tag{3}$$

где E'_e (дин/см²) – модуль упругости на плато высокоэластичности, ρ_x (моль/см³) – плотность сшивки, представляющая собой мольное число узловых сегментов сетки в единице объема полимера.

Результаты расчетов представлены в таблице 12. Как видно, плотность сшивки почти одинакова у всех изомеров и не коррелирует с температурами стеклования и модулем накопления при нормальной температуре. Это свидетельствует о том, что более высокие механические свойства poly(P-3,3'-d) обусловлены только специфическими свойствами химической связи в 3,3'-звеньях цепи и пространственной структурой упаковки трехмерной сетки.

Таблица 12 – Термомеханические свойства полибензоксазинов poly(P-3,3'-d), poly(P-3,4'-d) и poly(P-4,4'-d)

Полибензоксазин	T _g °C (tgδ)	Е' т = 25 °С (ГПа)	Е'тg + 40 ℃ (ГПа)	<i>ρ_x</i> (×10 ⁻³) (моль/см ³)	
poly(P-3,3'-d)	239,6	3,3	0,065	4,56	
poly(P-3,4'-d)	236,3	1,9	0,052	4,24	
poly(P-4,4'-d)	226,7	2,6	0,067	4,61	

Температуры стеклования (Tg) полибензоксазинов, определенные по пиковой температуре tgδ, как показано на рисунке 21, находятся в диапазоне от 226 до 239 °C.

Рисунок 21 – Температурная зависимость tgб полибензоксазинов poly(P-3,3'-d), poly(P-3,4'-d), и poly(P-4,4'-d)

3.3 Полимеризация бензоксазинов и химическая структура полибензоксазинов

Для установления химической структуры полидибензоксазинов, образующейся в результате термической полимеризации, был синтезирован ряд бензоксазиновых мономеров на основе фенола и его гомологов. Изменение химической структуры в процессе полимеризации изучали с помощью растворной ¹Н и ¹³С ЯМР спектроскопии на начальных степенях конверсии мономеров и ¹³С твердотельной ЯМР спектроскопии с вращением под «магическим» углом на более глубоких степенях превращения. Степень отверждения образцов определяли по общей теплоте реакции Q_{total} , которая определялась как сумма теплоты реакции отверждения, определенная в изотермическом режиме при температуре 180 °C (Q_{iso}) и остаточной теплоты реакции Q_{res} . Для получения значений Q_{res} после завершения изотермических измерений ДСК отвержденные образцы охлаждали до 50 °C, а затем нагревали до 350 °C со скоростью 10 К/мин. В этом случае степень отверждения α можно рассчитать по следующему соотношению:

$$\alpha = \frac{Q_{iso}}{Q_{iso} + Q_{res}} = \frac{Q_{iso}}{Q_{total}}$$
(4)

Зависимости изменения степени конверсии бензоксазиновых мономеров оС-4,4'-d, рС-4,4'-d и Р-4,4'-d от времени отверждения при 180 °С приведены на рисунке 22. На приведенных графиках можно выделить три основные области аналогичные тем, что были приведены для зависимости энергии активации от конверсии бензоксазиновых мономеров на основе изомеров диаминодифенилметана, а именно: медленное некаталитическое раскрытие оксазиновых циклов (α < 0,2); автокаталитическое раскрытие оксазиновых циклов за счет протонирования атомов кислорода образующимися В процессе

полимеризации гидроксильными группами (0,2 < α < 0,7); стадия, контролируемая диффузионными ограничениями (0,7 < α < 1).

Рисунок 22 – Зависимость конверсии мономеров оС-4,4'-d, pС-4,4'-d, P-4,4'-d от времени отверждения

На графиках отчетливо прослеживается влияние заместителей в фенольном фрагменте на реакционную способность бензоксазиновых мономеров, которая снижается в ряду P-4,4'-d > pC-4,4'-d > oC-4,4'-d, что связано с негативным эффектом метильных групп, особенно при наличии последних в *орто*-положении фенола, поскольку в таком случае они блокируют преимущественный реакционный центр, по которому протекает рост цепи, а также оказывают стерическое влияние.

Термическая полимеризация при 180 °C бензоксазинового мономера на основе 2,4-диметилфенола и 4,4'-диаминодифенилметана (24X-4,4'-d) с заблокированными полимеризационно-способными *орто-* и *пара-*положениями в фенольном фрагменте привела лишь к образованию оснований Шиффа, несмотря на наличие свободного *орто-*положения аминного фрагмента, по которому также возможно протекание реакции ароматического электрофильного замещения, приводящей к росту цепи. На образование оснований Шиффа указывает исчезновение на ¹Н ЯМР спектрах сигналов протонов метиленовых групп

оксазиновых циклов и появление новых сигналов при 8,57 и 13,42 м.д., принадлежащих протонам –СН=N– и –С_{аром.}–ОН групп соответственно (рисунок 23), которые наблюдаются у исходных синтезированных оснований Шиффа. При этом тепловой эффект реакции, определенный методом ДСК в динамическом режиме, составил 180 Дж/г.

Рисунок 23 – ¹Н ЯМР спектры 24Х-4,4'-d в процессе отверждения при 180 °С

Сигналы идентичные основаниям Шиффа также наблюдались на растворных ¹H и ¹³C ЯМР отверждаемых бензоксазиновых мономеров оС-4,4'-d (рисунки 24 и 25), pС-4,4'-d и ВА-а (приложения Л – H). На ¹³C ЯМР спектрах характерные сигналы атомов углеродов –С_{аром}.–ОН и –СН=N– групп наблюдаются при 159,6 и 162,4 м.д. соответственно, также проявляется новый сигнал при 121 м.д., который

относится к ароматическим атомам углерода, находящимся в *орто*-положении относительно атома азота в дифенилметановом фрагменте основания Шиффа.

Рисунок 24 – ¹Н ЯМР спектры оС-4,4'-d в процессе отверждения при 180 °С

Рисунок $25 - {}^{13}$ С ЯМР спектры оС-4,4'-d в процессе отверждения при 180 °С

Образование оснований Шиффа также подтверждается масс-спектрами. На рисунке 26 приведены масс-спектры бензоксазина оС-4,4'-d до и после отверждения в течение 3 часов при 180 °С. Как видно из масс-спектров помимо основного сигнала мономера с m/z = 461, у частично отвержденного образца наблюдаются сигналы с m/z = 435 и 449, что соотносится с молекулярной массой оснований Шиффа, приведенных на масс-спектрах.

85

Рисунок 26 – Масс-спектры оС-4,4'-d в процессе отверждения при 180 °С

Хотя в литературе и известна кольцево-цепная таутомерия тетрагидро-1,3-оксазинов (44) [56,57,131], процесс образования оснований Шиффа в ходе термической полимеризации бензоксазинов на сегодняшний день не установлен. Х. Ишида с коллегами предположили образование оснований Шиффа вследствие взаимодействия протонированного атома кислорода оксазинового цикла с молекулой воды и с последующим отщеплением молекулы метилового спирта (45) [59]. Однако, эта реакция предполагает наличие в полимере значительных количеств воды, в то время как потеря массы в районе 5 % часто проявляется и в тщательно высушенных полимерах. Следовательно, либо указанная вода является химически сорбированной и не может быть удалена обычными способами, что было предположено в работе [53], либо образование основания Шиффа имеет иную природу, которую еще лишь предстоит установить.

Частично отвержденные бензоксазины оС-4,4'-d и рС-4,4'-d были полностью растворимы до степени конверсии $\alpha \approx 0,7$. На их ¹Н ЯМР спектрах (рисунки 27 и 28), помимо сигналов оснований Шиффа наблюдается уширение линий в области 4,57 и 5,31 м.д., которое указывает на образование олигомеров *N*,*O*-ацетальной структуры (46), химический сдвиг протонов метиленовых групп в которой практически идентичен химическим сдвигам протонов метиленовых групп оксазиновых циклов. Помимо данных сигналов, на ¹Н ЯМР спектре рС-4,4'-d присутствует широкий сигнал в диапазоне 4,21 – 4,32 м.д., который связан с образованием олигомеров, состоящих из фенольных мостиков Манниха [74].

Для анализа олигомерной фракции в этих образцах осуществлялась их гельпроникающая хроматография. На рисунке 29 представлены полученные хроматограммы. Пики с временем выхода 27 минут относятся к мономерной фракции образцов, в то время как пики в левой части с меньшим временем удержания относятся к образующимся олигомерам. И как видно из полученного значения молекулярной массы пика олигомерной фракции на кривой молекулярномассового распределения (рисунок 30), она состоит преимущественно из димеров и тримеров.

89

Рисунок 29 – Хроматограммы оС-4,4'-d и pС-4,4'-d с конверсией $\alpha \approx 0,7$

Рисунок 30 — Молекулярно-массовое распределение образцов оС-4,4'-d и рС-4,4'-d с конверсией $\alpha \approx 0,7$

Таким образом, обобщая вышеприведенные данные, можно заключить, что полимеризации бензоксазиновых начальная стадия мономеров на основе 4,4'-диаминодифенилметана и гомологов фенола протекает медленно И замедляется в ряду P-4,4'-d > pC-4,4'-d > oC-4,4'-d и вовсе не протекает в случае 24Х-4,4'-d. При этом оксазиновые циклы в процессе термической полимеризации подвержены побочной реакции, приводящей к образованию оснований Шиффа, которая также обладает тепловым эффектом, как показано случае В бензоксазинового мономера 24Х-4,4'-d. Это означает, что тепловой эффект реакции, определенный методом ДСК, а, следовательно, и конверсия мономеров, рассчитанная по общей теплоте реакции, отражают не только раскрытие оксазиновых циклов в ходе процесса полимеризации, но и их превращение в основания Шиффа, что объясняет растворимость бензоксазиновых мономеров pC-4,4'-d и oC-4,4'-d до степени конверсии $\alpha \approx 0,7$ и олигомерную фракцию, состоящую преимущественно из димеров и тримеров.

Химическое строение сшитых полибензоксазинов изучали с помощью 13 С ЯМР спектроскопии твердого тела с вращением под «магическим» углом. На рисунке 31 показаны 13 С ЯМР спектры бензоксазинового мономера P-4,4'-d, отвержденного при 180 °C. На спектрах образцов, отвержденных в течение 1 и 2 часов, помимо сигналов атомов углерода метиленовых групп оксазиновых циклов при 48,2 и 77,5 м.д. соответственно, наблюдается появление сигналов при 52 и 82 м.д, связанные, как и в случае бензоксазинов оС-4,4'-d и рС-4,4'-d с образованием *N*,*O*-ацетальной структуры и протеканием побочной реакции, приводящей к образованию оснований Шиффа, о наличии которой свидетельствует появление сигнала в области 162 м.д., принадлежащему атомам углерода –CH=N– групп.

Рисунок 31 – ¹³С ЯМР спектры твердого тела Р-4,4'-d, отвержденного при 180 °С

В спектре, полученном через 6 часов, сигналы в области 77 – 82 м.д. отсутствуют, что свидетельствует о практически полном раскрытии оксазиновых циклов. Наличие сигнала в области 48 м.д., а также снижение интенсивности сигнала свободных *орто*-положений фенольного фрагмента в области 117,2 м.д., связано с образованием фенольных мостиков Манниха [130,132]. При этом данная структура может образовываться в результате внутримолекулярной перегруппировки *N,O*-ацетальной структуры (47) или же путем протонирования атомов кислорода оксазиновых циклов (48). Протонирующими соединениями

могут являться образующиеся в ходе побочной реакции основания Шиффа или же основания Бетти, которые несмотря на многократную перекристаллизацию исходного мономера P-4,4'-d присутствуют в качестве примеси как показано на масс-спектре (рисунок 32).

Рисунок 32 – Масс-спектр мономера Р-4,4'-d

Появление сигнала в области 32 м.д. и дальнейший рост его интенсивности обусловлены образованием фенольных и ариламиновых метиленовых мостиков (49) [68,133], которые образуются в результате дезаминирования фенольных мостиков Манниха. На этот процесс также указывает уменьшение сигнала последних в области 48 м.д. Основания Манниха давно известны как соединения, способные при термолизе генерировать *орто*-хинонметид [8,59,68,98,100,103,132,134]. Последний является сильным электрофилом и способен алкилировать активированные ароматические соединения, тем самым приводя к перераспределению сшивок в образующемся полимере [135].

По схемам, приведенным в литературных источниках, данный процесс подразумевает алкилирование свободных *орто*-положений фенольного фрагмента с образованием фенолформальдегидных олигомеров, а также образование свободных вторичных и первичных аминов с последующим их улетучиванием из системы [59,103,133,136]. В таком случае должна наблюдаться значительная потеря массы в процессе отверждения, что характерно для монобензоксазинов. Однако при полимеризации дифункционального бензоксазина P-4,4'-d потеря массы составила всего 4,8 % (рисунок 33), что указывает на включение приведенных соединений в структуру полимера.

Рисунок 33 – Изотермическая кривая ТГА процесса отверждения P-4,4'-d при 180 °C

Также на возможность алкилирования *орто*-хинонметидом аминного фрагмента, первичных и вторичных аминов указывает наличие сигнала метиленовых мостиков в области 31,8 м.д. на ¹³С твердотельном ЯМР спектре бензоксазинового мономера оС-4,4'-d, отвержденного в течение 6 часов при 180 °С (рисунок 34). Данный химический сдвиг возможен только в случае образования *орто-орто* метиленовых мостиков, и поскольку в оС-4,4'-d нет свободных *орто*положений в фенольном фрагменте, наличие данного сигнала указывает на алкилирование *орто*-положений аминного фрагмента, интенсивность сигнала которых в области 119 м.д. уменьшается. При этом примечательно, что мономер 24Х-4,4'-d не полимеризуется несмотря на свободное реакционное *орто*-положение в ариламинном фрагменте. Это объясняется тем, что в других мономерах (P-4,4'-d, oC-4,4'-d и pC-4,4'-d) указанное реакционное положение вступает в реакцию с *орто*-хинонметидами, которые, в свою очередь формируются вследствие дезаминирования фенольных мостиков Манниха. А поскольку последние в 24Х-4,4'-d не образуются, то и реагента для вступления *орто*-положений ариламинового фрагмента в реакцию не формируются.

Рисунок 34 – ¹³С ЯМР спектры неотвержденного (красная линия) и отвержденного (зеленая линия) в течение 6 часов при 180 °С бензоксазинового мономера оС-4,4'-d

На ¹³С ЯМР спектре полностью отвержденного бензоксазина Р-4,4'-d с конечной температурой полимеризации 200 °С сигнал фенольных мостиков Манниха при 48 м.д. практически отсутствует, что указывает на полное

дезаминирование данной структуры. Однако, по-прежнему наблюдается сигнал атомов углерода иминной связи в области 162 м.д. (рисунок 35). Также наблюдается и на ИК-спектре полибензоксазина poly(P-4,4'-d) сигнал валентных колебаний C=N связи при 1620 см⁻¹ (рисунок 36). Следует отметить, что в работах [68,133], посвященных изучению химического строения полибензоксазинов, в которых модельным соединением являлся монобензоксазин на основе *n*-крезола и анилина (pC-a), химические сдвиги иминных связей на ¹Н и ¹³С ЯМР спектрах обнаружены не были. Их отсутствие можно объяснить значительной потерей массы при полимеризации pC-а. Вероятно, образующийся свободный имин, не удерживающийся в системе, приводит к отсутствию иминных связей в структуре полимера. Однако, в некоторых работах на ИК-спектрах были найдены валентные колебания C=N связей. При этом их появление обычно связывают с образованием низкомолекулярного имина в результате процессов термической деструкции полибензоксазинов [137,138] или с перегруппировкой растущего центра [69]. В обоих случаях в ходе реакции образуется летучий свободный имин. Однако в данном исследовании основания Шиффа появляются еще в начале полимеризации. При этом при кипячении полибензоксазина poly(P-4,4'-d) в толуоле, в котором растворимы низкомолекулярные образующиеся основания Шиффа, потери массы не наблюдается, а сам имин из полимера не экстрагируется, что указывает на включение в полимерную цепь данных соединений, поскольку они также могут вступать в реакции ароматического электрофильного замещения.

Рисунок 35 – ¹³С твердотельный ЯМР спектр poly(P-4,4'-d) (постотверждение 2 часа при 200 °С)

Рисунок 36 – ИК-спектры полибензоксазина poly(P-4,4'-d)

Образование оснований Шиффа также возможно в результате взаимодействия растущего центра с основной цепью полимера. Иминиевый катион может выступать в роли акцептора гидрид-иона, который переносится из альфаположения к NH-группе аналогично механизму формилирования по Даффу (50) [139] и таким образом приводит к обрыву цепи. К тому же на приведенных твердотельных ЯМР спектрах poly(P-4,4'-d) по мере увеличения времени отверждения появляется сигнал в области 16,8 м.д., который принадлежит концевой CH₃-группе, находящейся в *орто*-положении по отношению к OH-группе фенольного фрагмента. Появление данного сигнала свидетельствует о начале деструкции, которая может происходить путем разрыва связи C–N фенольных мостиков Манниха, с образованием –CH=N– связей (51).

Описанные закономерности образования химической структуры справедливы дифенольного бензоксазинового BA-a, И для мономера отвержденного также при температуре 180 °C. Полученные твердотельные ¹³С ЯМР спектры представлены на рисунке 37. В отличие от полученных результатов, в работе [135], где осуществлялась термическая полимеризация бензоксазинового мономера ВА-а при температуре 150 °C, на ¹³С твердотельных ЯМР спектрах сигналы фенольных метиленовых мостиков обнаружены не были. При данной температуре химическая структура полимера преимущественно состоит из

фенольных мостиков Манниха, что согласуется с данными о возможности дезаминирования последних при температурах 180 °С и выше [140].

Рисунок 37 – ¹³С ЯМР спектры твердого тела Ва-а, отвержденного при 180 °С

Таким образом, установлено, что в процессе термической полимеризации дифункциональных бензоксазинов при 180 °C, помимо описанных стадий инициирования с образованием цвиттер-ионного соединения (52а) или иона иминия (52б), роста цепи с формированием N,O-ацетальной структуры (52в) и ее перегруппировки в фенольные мостики Манниха (52д) (которые на данный момент считаются основной образующейся структурой при полимеризации бензоксазинов) [58–67], наблюдается дезаминирование последних с образованием вторичных аминов и *орто*-хинонметидов (52е), при этом *орто*-хинонметид алкилирует не только фенольный, но и ариламиновый фрагмент растущей цепи с образованием фенольных и ариламиновых структур (52ж, 52и). Также установлено,

что в полимерную цепь включены –CH=N– группы, образование которых может происходить в результате протекания нескольких процессов: побочной реакции раскрытия оксазиновых циклов, обрыва (52к) и деструкции цепи полимера.

Инициирование - раскрытие цикла

4 ЗАКЛЮЧЕНИЕ

По результатам диссертационной работы можно сделать следующие выводы:

1. Синтезированы два неописанных ранее дифункциональных бензоксазиновых мономера на основе 3,3'- и 3,4'-диаминодифенилметана, сопоставление свойств которых с известным 4,4'-изомером позволило установить, что:

 Положение аминогруппы в исходном ароматическом диамине мало влияет на начало процесса полимеризации полученных бензоксазиновых мономеров;

 Полученные полибензоксазины характеризуются близкими плотностями сшивки, которые не коррелируют с их температурами стеклования и модулем накопления при нормальной температуре;

 Большая жесткость и температура стеклования полибензоксазина на основе 3,3'-диаминодифенилметана, объясняется только специфическими свойствами химической связи в 3,3'-звеньях цепи и пространственной структурой упаковки трехмерной сетки;

— По результатам термогравиметрического анализа установлено, что наибольшей термостабильностью в атмосфере азота обладает полибензоксазин на основе 3,4'-диаминодифенилметана, в то время как в атмосфере воздуха полибензоксазин на основе 4,4'-диаминодифенилметана.

2. С помощью ¹³С ЯМР спектроскопии твердого тела с вращением под «магическим» углом уставлена химическая структура полибензоксазинов на основе 4,4'-диаминодифенилметана и гомологов фенола в процессе отверждения при 180 °С. Установлено, что в процессе термической полимеризации химическая структура полидибензоксазинов, состоящая из фенольных мостиков Манниха, подвергается дезаминированию, а *орто*-положение ариламинного фрагмента подвергается алкилированию *орто*-хинонметидом с образованием ариламиновых метиленовых структур; 3. Впервые предложена схема термической полимеризации бензоксазинов, включающая процессы передачи и обрыва цепи и объясняющая образование структур полииминного типа.

Полученные практические результаты позволят перейти к более осознанному молекулярному дизайну бензоксазиновых мономеров и связующих на их основе для полимерных композиционных материалов. Понимание химической структуры полимерной матрицы необходимо для создания полимеров с заданными свойствами.

Дальнейшими направлениями исследования являются:

 Исследование химической структуры полимерной цепи дифунциональных бензоксазинов, образующейся в результате каталитической полимеризации при 150 °C с применением катализаторов кислотного типа;

– Исследование химической структуры дифунциональных бензоксазиновых мономеров на основе метилзамещенных ароматических аминов и дифенолов.

СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

- ESI(+)-MS Масс-спектрометрия с ионизацией электрораспылением в положительном режиме
- IRMTD Инфракрасная спектроскопия многофотонной диссоциации
- MALDI-TOF Матрично-активированная лазерная десорбция/ионизация с времяпролетным масс-спектрометром
- ВЭЖХ-МС Высокоэффективная жидкостная хроматография с массдетектором
- ДМА Динамический механический анализ
- ДМСО Диметилсульфоксид
- ДМФА N,N-Диметилформамид
- ПКМ Полимерные композиционные материалы
- ТГА Термогравиметрический анализ
- ТГФ Тетрагидрофуран
- ЯМР Ядерный магнитный резонанс

СПИСОК ЛИТЕРАТУРЫ

- 1. Ishida, H. Handbook of Benzoxazine Resins / H. Ishida, T. Agag // Elsevier. 2011.
- Takeichi, T. Polybenzoxazines as a Novel Type of Phenolic Resin / T. Takeichi, T. Kawauchi, T. Agag // Polymer Journal. 2008. Vol. 40. № 12. P. 1121–1131.
- Ghosh, N.N. Polybenzoxazines—New high performance thermosetting resins: Synthesis and properties / N.N. Ghosh, B. Kiskan, Y. Yagci // Progress in Polymer Science. – 2007. – Vol. 32. – № 11. – P. 1344–1391.
- Holly, F.W. Condensation Products of Aldehydes and Ketones with o-Aminobenzyl Alcohol and o-Hydroxybenzylamine / F.W. Holly, A.C. Cope // Journal of American Chemical Society. – 1944. – Vol. 66. – № 11. – P. 1875–1879.
- Burke, W.J. 3,4-Dihydro-1,3,2H-Benzoxazines. Reaction of p -Substituted Phenols with N,N-Dimethylolamines / W.J. Burke // Journal of American Chemical Society. - 1949. - Vol. 71. - № 2. - P. 609–612.
- Andreu, R. Carboxylic acid-containing benzoxazines as efficient catalysts in the thermal polymerization of benzoxazines / R. Andreu, J.A. Reina, J.C. Ronda // Journal of Polymer Science: Part A: Polymer Chemistry. 2008. Vol. 46. № 18. P. 6091–6101.
- Andreu, R. Studies on the thermal polymerization of substituted benzoxazine monomers: Electronic effects / R. Andreu, J.A. Reina, J.C. Ronda // Journal of Polymer Science: Part A: Polymer Chemistry. – 2008. – Vol. 46. – № 10. – P. 3353– 3366.
- Ishida, H. Regioselectivity and Network Structure of Difunctional Alkyl-Substituted Aromatic Amine-Based Polybenzoxazines / H. Ishida, D.P. Sanders // Macromolecules. – 2000. – Vol. 33. – № 22. – P. 8149–8157.
- Liu, J. Synthesis, characterization, reaction mechanism and kinetics of 3,4-dihydro-2H-1,3-benzoxazine and its polymer: doct. ... diss / Jingping Liu. – Cleveland, 1995. – 220 P.

- Petrakova, V.V. Study of the Products of Monobenzoxazine Polymerization by X-ray Photoelectron Spectroscopy / V.V. Petrakova, V.V. Kireev, A.V. Naumkin, I.S. Sirotin // Polymer Science, Series B. – 2023. – Vol. 65. – № 2. – P. 111–119.
- Agag, T. A new synthetic approach for difficult benzoxazines: Preparation and polymerization of 4,4'-diaminodiphenyl sulfone-based benzoxazine monomer / T. Agag, L. Jin, H. Ishida // Polymer. – 2009. – Vol. 50. – № 25. – P. 5940–5944.
- 12. Sarychev, I.A. Benzoxazine monomers based on aromatic diamines and investigation of their polymerization by rheological and thermal methods / I.A. Sarychev, V.V. Kireev, V.V. Khmelnitskiy et al. // Journal of Applied Polymer Science. 2021. Vol. 138. № 10. P. 49974.
- Zhang, L. Contribution of blocking positions on the curing behaviors, networks and thermal properties of aromatic diamine-based benzoxazines / L. Zhang, Y. Zheng, R. Fu et al. // Thermochimica Acta. – 2018. – Vol. 668. – P. 65–72.
- 14. Chen, J. Design and Preparation of Benzoxazine Resin with High-Frequency Low Dielectric Constants and Ultralow Dielectric Losses / J. Chen, M. Zeng, T. Pang et al. // ACS Applied Polymer Materials. 2019. Vol. 1. № 4. P. 625–630.
- Brunovska, Z. 1,3,5-Triphenylhexahydro-1,3,5-triazine active intermediate and precursor in the novel synthesis of benzoxazine monomers and oligomers / Z. Brunovska, J.P. Liu, H. Ishida // Macromolecular Chemistry and Physics. – 1999. – Vol. 200. – № 7. – P. 1745–1752.
- 16. Lin, C.H. Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies / C.H. Lin, S.L. Chang, T.Y. Shen // Polymer Chemistry. – 2012. – Vol. 3. – № 4. – P. 935.
- 17. Petrakova, V.V. Benzoxazine Monomers and Polymers Based on 3,3'-Dichloro-4,4'-Diaminodiphenylmethane: Synthesis and Characterization / V.V. Petrakova, V.V. Kireev, D.V. Onuchin et al. // Polymers. – 2021. – Vol. 13. – № 9. – P. 1421.

- Lin, C.H. Aromatic diamine-based benzoxazines and their high performance thermosets / C.H. Lin, S.L. Chang, C.W. Hsieh, C.W. Hsieh // Polymer. – 2008. – Vol. 49. – № 5. – P. 1220–1229.
- Kamble, R.D. Green synthesis and in silico investigation of dihydro-2Hbenzo[1,3]oxazine derivatives as inhibitors of Mycobacterium tuberculosis / R.D. Kamble, S.V. Hese, J.R. Kote et al. // Medicinal Chemistry Research. – 2015. – Vol. 24. – № 3. – P. 1077–1088.
- 20. Пат. № US8288533B1 Соединенные Штаты Америки, МПК С07D 265/12. Methods for preparing benzoxazines using aqueous solvent / W.H. Li, W. Jiang; заявитель и патентообладатель Henkel Corporation. – № 12/888,850; заявл. 23.09.2010; опубл. 05.04.2012.
- 21. Oliveira, J.R. Microwave-assisted solvent-free synthesis of novel benzoxazines: A faster and environmentally friendly route to the development of bio-based thermosetting resins / J.R. Oliveira, L.R.V. Kotzebue, F.W.M. Ribeiro et al. // Journal of Polymer Science: Part A: Polymer Chemistry. 2017. Vol. 55. № 21. P. 3534–3544.
- 22. Oliveira, J.R. New opportunity for sustainable benzoxazine synthesis: A straight and convenient one-pot protocol for formaldehyde-free bio-based polymers / J.R. Oliveira, D.B. Freitas, J.F.R. Oliveira et al. // European Polymer Journal. 2021. Vol. 156. P. 110596.
- 23. Tumtin, S. One pot synthesis of [1,3]-oxazine and [1,3]-thiazine derivatives under thermal and microwave conditions / S. Tumtin, I.T. Phucho, A. Nongtum et al. // Journal of Heterocyclic Chemistry. 2010. Vol. 47. № 1. P. 125–130.
- 24. Smith, H.E. Ring-chain tautomerism of derivatives of 1-(alpha-aminobenzyl)-2naphthol with aromatic aldehydes / H.E. Smith, N.E. Cooper // The Journal of Organic Chemistry. – 1970. – Vol. 35. – № 7. – P. 2212–2215.

- 25. Sreedhar, B. Ultrasound-assisted rapid and efficient synthesis of propargylamines /
 B. Sreedhar, P.S. Reddy, B.V. Prakash, A. Ravindra // Tetrahedron Letters. 2005. –
 Vol. 46. № 41. P. 7019–7022.
- 26. Luzzio, F.A. Efficient Preparation and Processing of the 4-Methoxybenzyl (PMB) Group for Phenolic Protection Using Ultrasound / F.A. Luzzio, J. Chen // The Journal of Organic Chemistry. – 2008. – Vol. 73. – № 14. – P. 5621–5624.
- 27. Vengatesan, M.R. Ultrasound-assisted synthesis of benzoxazine monomers: thermal and mechanical properties of polybenzoxazines / M.R. Vengatesan, S. Devaraju, D. Kannaiyan et al. // Polymer International. 2013. Vol. 62. № 1. P. 127–133.
- Deng, Y. Kinetics of 3,4-Dihydro-2H-3-phenyl-1,3-benzoxazine Synthesis from Mannich Base and Formaldehyde / Y. Deng, Q. Zhang, H. Zhang et al. // Industrial and Engineering Chemistry Research. – 2014. – Vol. 53. – № 5. – P. 1933–1939.
- 29. Zhu, W. The Expanding Role of Electrospray Ionization Mass Spectrometry for Probing Reactive Intermediates in Solution / W. Zhu, Y. Yuan, P. Zhou et al. // Molecules. Molecular Diversity Preservation International. 2012. Vol. 17. № 10. P. 11507–11537.
- 30. Ding, Y. New Views on the Reaction of Primary Amine and Aldehyde from DFT Study / Y. Ding, Y. Cui, T. Li // The Journal of Physical Chemistry A. American Chemical Society. – 2015. – Vol. 119. – № 18. – P. 4252–4260.
- 31. Boros, R.Z. An Ab Initio Investigation of the 4,4'-Methlylene Diphenyl Diamine (4,4'-MDA) Formation from the Reaction of Aniline with Formaldehyde / R.Z. Boros, L. Farkas, K. Nehez et al. // Polymers. Multidisciplinary Digital Publishing Institute. 2019. Vol. 11. № 3. P. 398.
- 32. Perry, R.H. Detecting Reaction Intermediates in Liquids on the Millisecond Time Scale Using Desorption Electrospray Ionization / R.H. Perry, M. Splendore, A. Chien et al. // Angewandte Chemie International Edition. – 2011. – Vol. 50. – № 1. – P. 250–254.
- 33. Lambert, J.B. A Tamed Reactive Intermediate / J.B. Lambert // Science. American Association for the Advancement of Science. – 2008. – Vol. 322. – № 5906. – P. 1333–1334.
- 34. Fernandes, A.M.A.P. Direct Visualization of Neurotransmitters in Rat Brain Slices by Desorption Electrospray Ionization Mass Spectrometry Imaging (DESI MS) / A.M.A.P. Fernandes, P.H. Vendramini, R. Galaverna et al. // Journal of American Society for Mass Spectrometry. 2016. Vol. 27. № 12. P. 1944–1951.
- 35. Brandt, S.D. Analytical chemistry of synthetic routes to psychoactive tryptamines : Part II. Characterisation of the Speeter and Anthony synthetic route to *N*,*N*dialkylated tryptamines using GC-EI-ITMS, ESI-TQ-MS-MS and NMR / S.D. Brandt, S. Freeman, I. Fleet et al. // Analyst. – 2005. – Vol. 130. –№ 3. – P. 330–344.
- 36. Xu, G. Detection of intermediates for the Eschweiler–Clarke reaction by liquid-phase reactive desorption electrospray ionization mass spectrometry / G. Xu, B. Chen, D. He et al. // Analyst. 2011. Vol. 136. № 11. P. 2385–2390.
- 37. Shneier, A. Observation of an imine intermediate on dehydroquinase by electrospray mass spectrometry / A. Shneier, C. Kleanthous, R. Deka et al. // Journalof American Chemical Society. – 1991. – Vol. 113. – № 24. – P. 9416–9418.
- 38. Chaudhuri, S. Identification of the active-site lysine residues of two biosynthetic 3dehydroquinases / S. Chaudhuri, K. Duncan, L.D. Graham, J.R. Coggins // Biochemical Journal. – 1991. – Vol. 275. № 1. – P. 1–6.
- Butler, J.R. Mechanism of dehydroquinase catalyzed dehydration. I. Formation of a Schiff base intermediate / J.R. Butler, W.L. Alworth, M.J. Nugent // Journal of American Chemical Society. – 1974. – Vol. 96. – № 5. – P. 1617–1618.
- 40. Champagne, B. Theoretical Chemistry in Belgium / B. Champagne, M.S. Deleuze,
 F.D. Proft, T. Leyssens // Theoretical Chemistry Accounts. 2013. Vol. 132. №
 7. 1372–1385.
- 41.Domingo, L.R. A Theoretical Study of the Reaction between Cyclopentadiene and Protonated Imine Derivatives: A Shift from a Concerted to a Stepwise Molecular

Mechanism / L.R. Domingo, M. Oliva, J. Andrés // The Journal of Organic Chemistry.
– 2001. Vol. 66. – № 18. – P. 6151–6157.

- 42. Mu, W.-H. Computational study on the conversion of an aziridine and iminium salt to a 1,2-diamine / W.-H. Mu, C. Wang, D.-C. Fang // Journal of Molecular Structure: THEOCHEM. 2007. Vol. 806. № 1. P. 171–177.
- 43. Patil, M.P. On the Relative Preference of Enamine/Iminium Pathways in an Organocatalytic Michael Addition Reaction / M.P. Patil, R.B. Sunoj // Chemistry An Asian Journal. 2009. Vol. 4. № 5. P. 714–724.
- 44. Dalessandro, E.V. Mechanism of Piperidine-Catalyzed Knoevenagel Condensation Reaction in Methanol: The Role of Iminium and Enolate Ions / E.V. Dalessandro, H.P. Collin, L.G.L. Guimaraes et al. // The Journal of Physical Chemistry B. – 2017. – Vol. 121. – № 20. – P.5300–5307.
- 45. Myers, E.L. Catalysis of Hydrogen–Deuterium Exchange Reactions by 4-Substituted Proline Derivatives / E.L. Myers, M.J. Palte, R.T., Raines // The Journal of Organic Chemistry. – 2019. – Vol. 84. – № 3. – P. 1247–1256.
- 46. Zou, Y.-Q. Iminium and enamine catalysis in enantioselective photochemical reactions / Y.-Q. Zou, F.M. Hörmann, T. Bach // Chemical Society Reviews. 2018. Vol. 47. № 2. P. 278–290.
- 47. Silvi, M. Visible-light excitation of iminium ions enables the enantioselective catalytic β-alkylation of enals / M. Silvi, C. Verrier, Y.P. Rey et al. // Nature Chemistry. 2017. Vol. 9. № 9. P. 868–873.
- 48. Ribeiro, F.W.M. Benzoxazine Formation Mechanism Evaluation by Direct Observation of Reaction Intermediates / F.W.M. Ribeiro, A.F. Rodrigues-Oliveira, T.C. Correra // The Journal of Physical Chemistry A. 2019. Vol. 123. № 38. P. 8179–8187.
- 49. Zhang, C.-X. Study on products and reaction paths for synthesis of 3,4-dihydro-2H-3-phenyl-1,3-benzoxazine from phenol, aniline and formaldehyde / C.-X. Zhang, Y.-

Y. Zhang, P. Yang et al. // Chinese Chemical Letters. – 2015. – Vol. 26. – № 3. – P. 348–352.

- 50. Stow, S.M. Structural Characterization of Methylenedianiline Regioisomers by Ion Mobility-Mass Spectrometry, Tandem Mass Spectrometry, and Computational Strategies. 2. Electrospray Spectra of 3-Ring and 4-Ring Isomers / S.M. Stow, T. M. Onifer, J.G. Forsythe // Analytical Chemistry. – 2015. – Vol. 87. – № 12. – P. 6288– 6296.
- 51. Laobuthee, A. Asymmetric Mono-oxazine: An Inevitable Product from Mannich Reaction of Benzoxazine Dimers / A. Laobuthee, S. Chirachanchai, H. Ishida, K. Tashiro // Journal of the American Chemical Society. – 2001. – Vol. 123. – № 41. – P. 9947–9955.
- 52. Chirachanchai, S. Self termination of ring opening reaction of p-substituted phenol-based benzoxazines: An obstructive effect via intramolecular hydrogen bond / S. Chirachanchai, A. Laobuthee, S. Phongtamrug // Journal of Heterocyclic Chemistry. 2009. Vol. 46. № 4. P. 714–721.
- 53. Петракова, В.В. Синтез новых бензоксазиновых мономеров и полимеров: дисс.
 ... канд. хим. наук: 1.4.7. / Петракова Виктория Вячеславовна. М., 2023. 95 с.
- 54. Burke, W.J. Monomeric Products from the Condensation of Phenol with Formaldehyde and Primary Amines / W.J. Burke, C.W. Stephens // Journal of the American Chemical Society. – 1952. – Vol. 74. – № 6. – P. 1518–1520.
- 55. Riess, G. Ring Opening Polymerization of Benzoxazines A New Route to Phenolic Resins / G. Riess, J.M. Schwob, G. Guth et al. // Advances in Polymer Synthesis. – 1985. – P. 27–49.
- 56. McDonagh, A.F. Ring-chain tautomerism of derivatives of o-hydroxybenzylamine with aldehydes and ketones / A.F. McDonagh, H.E. Smith // The Journal of Organic Chemistry – 1968. – Vol. 33. – № 1. – P. 1–8.

- 57. McDonagh, A.F. Ring-chain tautomerism of derivatives of o-hydroxybenzylamine with aldehydes and ketones. The nuclear magnetic resonance spectra of immonium ions / A.F. McDonagh, H.E. Smith // The Journal of Organic Chemistry. 1968. Vol. 33. № 1. P. 8–12.
- 58. Dunkers, J. Reaction of benzoxazine-based phenolic resins with strong and weak carboxylic acids and phenols as catalysts / J. Dunkers, H. Ishida // Journal of Polymer Science: Part A: Polymer Chemistry. – 1999. – Vol. 37. – № 13. – P. 1913–1921.
- 59. Chutayothin, P. Cationic Ring-Opening Polymerization of 1,3-Benzoxazines: Mechanistic Study Using Model Compounds / P. Chutayothin, H. Ishida // Macromolecules. – 2010. – Vol. 43. – № 10. – P. 4562–4572.
- 60. Ribeiro, F.W.M. Microstructural Analysis of Benzoxazine Cationic Ring-Opening Polymerization Pathways / F.W.M. Ribeiro, I. Omari, G.T. Thomas et al. // Macromolecular Rapid Communications. – 2024. – Vol. 45. – № 2. – P. 2300470.
- 61. Kim, H.-D. Study on Hydrogen-Bonded Network Structure of Polybenzoxazines / H.-D. Kim, H. Ishida // The Journal of Physical Chemistry A. 2002. Vol. 106. № 14. P. 3271–3280.
- 62. Ishida, H. A Study on the Volumetric Expansion of Benzoxazine-Based Phenolic Resin / H. Ishida, H.Y. Low // Macromolecules. – 1997. – Vol. 30. – № 4. P. 1099– 1106.
- 63. Ishida, H. Catalyzing the curing reaction of a new benzoxazine-based phenolic resin / H. Ishida, Y. Rodriguez // Journal of Applied Polymer Science. 1995. Vol. 58. № 10. P. 1751–1760.
- 64. Wirasate, S. Molecular origin of unusual physical and mechanical properties in novel phenolic materials based on benzoxazine chemistry / S. Wirasate, S. Dhumrongvaraporn, D. J. Allen, H. Ishida // Journal of Applied Polymer Science. 1998. Vol. 70. № 7. P. 1299–1306.

- 65. Wang, Y.-X. Synthesis and Properties of New Thermoplastic Polymers from Substituted 3,4-Dihydro-2H-1,3-benzoxazines / Y.-X. Wang, H. Ishida // Macromolecules. 2000. Vol. 33. № 8. P. 2839–2847.
- 66. Ishida, H. Synthesis and characterization of maleimide and norbornene functionalized benzoxazines / H. Ishida, S. Ohba // Polymer. 2005. Vol. 46. № 15. P. 5588–5595.
- 67. Ishida, H. Physical and mechanical characterization of near-zero shrinkage polybenzoxazines / H. Ishida, D.J. Allen // Journal of Polymer Science: Part B: Polymer Physics. 1996. Vol. 34. № 6. P. 1019–1030.
- 68. Liu, C. Mechanistic Studies on Ring-Opening Polymerization of Benzoxazines: A Mechanistically Based Catalyst Design / C. Liu, D. Shen, R.M. Sebastian et al. // Macromolecules. – 2011. – Vol. 44. – № 12. – P. 4616–4622.
- 69. Ohashi, S. Synthesis and ring-opening polymerization of 2-substituted 1,3-benzoxazine: the first observation of the polymerization of oxazine ring-substituted benzoxazines / S. Ohashi, F. Cassidy, S. Huang et al. // Polymer Chemistry. 2016. Vol. 7. № 46. P. 7177–7184.
- 70. Han, L. Intrinsic self-initiating thermal ring-opening polymerization of 1,3-benzoxazines without the influence of impurities using very high purity crystals / L. Han, M.L. Salum, K. Zhang et al. // Journal of Polymer Science: Part A: Polymer Chemistry. 2017. Vol. 55. № 20. P. 3434–3445.
- 71. Wang, M.W. Study on the Ring-Opening Polymerization of Benzoxazine through Multisubstituted Polybenzoxazine Precursors / M.W. Wang, R.J. Jeng, C.H. Lin // Macromolecules. – 2015. – Vol. 48. – № 3. – P. 530–535.
- 72. Lochab, B. Review on the accelerated and low-temperature polymerization of benzoxazine resins: addition polymerizable sustainable polymers / B. Lochab, M. Monisha, N. Amarnath et al. // Polymers. 2021. Vol. 13. № 8. P. 1260.

- 73. Liu, C. Catalytic Accelerated Polymerization of Benzoxazines and Their Mechanistic Considerations / C. Liu, Q.-Y. Chen // Advanced and Emerging Polybenzoxazine Science and Technology. Elsevier. – 2017. – P. 9–21.
- 74. Andreu, R. BF₃·OEt₂ in alcoholic media, an efficient initiator in the cationic polymerization of phenyl-1,3-benzoxazines / R. Andreu, M. Galia, V. Cadiz et al. // Journal of Polymer Science: Part A: Polymer Chemistry. 2013. Vol. 51. № 23. P. 5075–5084.
- 75. Liu, C. Catalyst effects on the ring-opening polymerization of 1,3-benzoxazine and on the polymer structure / C. Liu, D. Shen, R.M. Sebastian et al. // Polymer. 2013.
 Vol. 54. № 12. P. 2873–2878.
- 76. Sudo, A. Highly efficient catalysts-acetylacetonato complexes of transition metals in the 4th period for ring-opening polymerization of 1,3-benzoxazine / A. Sudo, S. Hirayama, T. Endo // Journal of Polymer Science: Part A: Polymer Chemistry. 2010. Vol. 48. № 2. P. 479–484.
- 77. Ran, Q.-C. The structural transformation during polymerization of benzoxazine/FeCl₃ and the effect on the thermal stability / Q.-C. Ran, D.-X. Zhang, R.-Q. Zhu, Y. Gu // Polymer. 2012. Vol. 53. № 19. P. 4119–4127.
- 78. Kasapoglu, F. Photoinitiated cationic polymerization of monofunctional benzoxazine
 / F. Kasapoglu, I. Cianga, Y. Yagci, T. Takeichi // Journal of Polymer Science: Part
 A: Polymer Chemistry. 2003. Vol. 41. № 21. P. 3320–3328.
- 79. Sudo, A. Ring-opening polymerization of 1,3-benzoxazines by *p*-toluenesulfonates as thermally latent initiators / A. Sudo, H. Yamashita, T. Endo // Journal of Polymer Science: Part A: Polymer Chemistry. – 2011. – Vol. 49. – № 16. – P. 3631–3636.
- 80. Sudo, A. Selective Formation of Poly(*N*,*O*-acetal) by Polymerization of 1,3-Benzoxazine and Its Main Chain Rearrangement / A. Sudo, R. Kudoh, K. Arima et al. // Macromolecules. – 2008. – Vol. 41. – № 23. – P. 9030–9034.

- 81. Hamerton, I. Examining the Initiation of the Polymerization Mechanism and Network Development in Aromatic Polybenzoxazines / I. Hamerton, L.T. McNamara, B.J. Howlin et al. // Macromolecules. – 2013. – Vol. 46. – № 13. – P. 5117–5132.
- 82. Kawaguchi, A.W. Promoting effect of thiophenols on the ring-opening polymerization of 1,3-benzoxazine / A.W. Kawaguchi, A. Sudo, T. Endo // Journal of Polymer Science: Part A: Polymer Chemistry. 2014. Vol. 52. № 17. P. 2523–2527.
- 83. Sudo, A. Promoting effects of urethane derivatives of phenols on the ring-opening polymerization of 1,3-benzoxazines / A. Sudo, A. Mori, T. Endo // Journal of Polymer Science: Part A: Polymer Chemistry. 2011. Vol. 49. № 10. P. 2183–2190.
- 84. Espinosa, M.A. Synthesis and characterization of benzoxazine-based phenolic resins: Crosslinking study / M.A. Espinosa, V. Cádiz, M. Galià // Journal of Applied Polymer Science. – 2003. – Vol. 90. – № 2. – P. 470–481.
- 85. Пат. № JP2000178332A Соединенные Штаты Америки, МПК C08G 14/073. Termosetting resin composition / S. Miura, N.Kano ; заявитель и патентообладатель Shikoku Chemicals Corporation. – № JP10360491A ; заявл. 18.12.1998 ; опубл. 27.06.2000.
- 86. Martos, A. Studies on the ring-opening polymerization of benzoxazines: Understanding the effect of the substituents / A. Martos, R.M. Sebastián, J. Marquet // European Polymer Journal. – 2018. – Vol. 108. – P. 20–27.
- 87. Ohashi, S. Quantitative studies on the p-substituent effect of the phenolic component on the polymerization of benzoxazines / S. Ohashi, D. Iguchi, T.R. Heyl et al. // Polymer Chemistry. 2018. Vol. 9. № 31. P. 4194–4204.
- 88. Low, H.Y. An investigation of the thermal and thermo-oxidative degradation of polybenzoxazines with a reactive functional group / H.Y. Low, H. Ishida // Journal of Polymer Science: Part B: Polymer Physics. 1999. Vol. 37. № 7. P. 647–659.

- 89. Kim, H.J. Dynamic mechanical analysis on highly thermally stable polybenzoxazines with an acetylene functional group / H.J. Kim. Z. Brunovska, H. Ishida // Journal of Applied Polymer Science. – 1999. – Vol. 73. – № 6. – P. 857–862.
- 90. Kim, H.J. Molecular characterization of the polymerization of acetylene-functional benzoxazine resins / H.J. Kim, Z. Brunovska, H. Ishida // Polymer. 1999. Vol. 40.
 № 7. P. 1815–1822.
- 91. Brunovska, Z. Thermal properties of phthalonitrile functional polybenzoxazines / Z. Brunovska, R. Lyon, H. Ishida // Thermochimica Acta. 2000. Vol. 357–358. P. 195–203.
- 92. Brunovska, Z. Thermal study on the copolymers of phthalonitrile and phenylnitrilefunctional benzoxazines / Z. Brunovska, H. Ishida // Journal of Applied Polymer Science. – 1999. – Vol. 73. – № 14. – P. 2937–2949.
- 93. Kim, H.J. Synthesis and thermal characterization of polybenzoxazines based on acetylene-functional monomers / H.J. Kim, Z. Brunovska, H. Ishida // Polymer. 1999. Vol. 40. № 23. P. 6565–6573.
- 94. Martos, A. Highly Crosslinked Polybenzoxazines from Monobenzoxazines: The Effect of Meta-Substitution in the Phenol Ring / A. Martos, M. Soto, H. Schafer et al. // Polymers. 2020. Vol. 12. № 2. P. 254.
- 95. Lyu, Y. Electronic effects of asymmetric and meta-alkoxy substituents on the polymerization behavior of bis-benzoxazines / Y. Lyu, E. Rachita, N. Pogharian et al. // Polymer Chemistry. 2020. Vol. 11. № 4. P. 800–809.
- 96. Rajasekar, S. Synthesis and polymerization of benzoxazine molecules with electronwithdrawing group substitution and ring-opening polymerization / S. Rajasekar, N. Hari // High Performance Polymers. – 2017. – Vol. 29. – № 3. – P. 349–361.
- 97. Allen, D.J. Effect of phenol substitution on the network structure and properties of linear aliphatic diamine-based benzoxazines / D.J. Allen, H. Ishida // Polymer. 2009.
 Vol. 50. № 2. P. 613–626.

- 98. Ishida, H. Improved thermal and mechanical properties of polybenzoxazines based on alkyl-substituted aromatic amines / H. Ishida, D.P. Sanders // Journal of Polymer Science: Part B: Polymer Physics. – 2000. – Vol. 38. – № 24. – P. 3289–3301.
- 99. Wang, Y.-X. Development of low-viscosity benzoxazine resins and their polymers / Y.-X. Wang, H. Ishida // Journal of Applied Polymer Science. 2002. Vol. 86. № 12. P. 2953–2966.
- 100. Ishida, H. Regioselectivity of the ring-opening polymerization of monofunctional alkyl-substituted aromatic amine-based benzoxazines / H. Ishida, D.P. Sanders // Polymer. – 2001. – Vol. 42. – № 7. – P. 3115–3125.
- 101. Ran, Q. Thermal Degradation Mechanism of Polybenzoxazines / Q. Ran, Y. Gu,
 H. Ishida // Advanced and Emerging Polybenzoxazine Science and Technology.
 Elsevier. 2017. P. 171-204.
- 102. Low, H.Y. Mechanistic study on the thermal decomposition of polybenzoxazines: Effects of aliphatic amines / H.Y. Low, H. Ishida // Journal of Polymer Science: Part B: Polymer Physics. – 1998. – Vol. 36. – № 11. – P. 1935–1946.
- 103. Hemvichian, K. Thermal decomposition processes in polybenzoxazine model dimers investigated by TGA–FTIR and GC–MS / K. Hemvichian, A. Laobuthee, S. Chirachanchai, H. Ishida // Polymer Degradation and Stability. 2002. Vol. 76. № 1. P. 1–15.
- 104. Bagherifam, S. The use of pyrolysis mass spectrometry to investigate polymerization and degradation processes of methyl amine-based benzoxazine / S. Bagherifam, T. Uyar, H. Ishida, J. Hacaloglu // Polymer Testing. 2010. Vol. 29. № 4. P. 520–526.
- 105. Hemvichian, K. Thermal decomposition processes in aromatic amine-based polybenzoxazines investigated by TGA and GC–MS / K. Hemvichian, H. Ishida // Polymer. – 2002. – Vol. 43. – № 16. – P. 4391–4402.

- Rimdusit, S. Alloys and Composites of Polybenzoxazines / S. Rimdusit, C. Jubsilp,
 S. Tiptipakorn [Electronic resource] Singapore: Springer Singapore, 2013. ISBN 978-981-4451-75-8.
- 107. Innovation in benzoxazine resins | Engineer Live [Electronic resource]. URL: https://www.engineerlive.com/content/innovation-benzoxazine-resins (accessed: 10.04.2024).
- 108. Li W.H. Advances in Benzoxazine Resins for Aerospace Application / W.H. Li, A. Wong, D. Leach // SAMPLE Conference 2010. Seattle, 2010. P. 9
- 109. Araldite MT 35710 FST Huntsman [Electronic resource]. URL: https://omnexus.specialchem.com/product/r-huntsman-araldite-mt-35710-fst (accessed: 06.04.2025).
- Пат. № US20170008994A1 Соединенные Штаты Америки, МПК C08G 14/06, C08L 61/34, C09J 161/34, C08J 5/24. Reaction Hybrid Benzoxazine Resins and Uses Thereof / D. Wang, D.S Kincaid, R.C. Smith, B. Rechichar ; заявитель и патентообладатель HUNTSMAN ADVANCED MATERIALS AMERICAS LLC. № 15/119,514 ; заявл. 10.02.2015 ; опубл.12.01.2017.
- 111. Composites. Aerospace Product Selector Guide [Electronic resource]. URL: https://www.ellsworth.com/globalassets/literature-library/manufacturer/henkelloctite/henkel-loctite-selector-guide-aerospace-compositeproducts.pdf?srsltid=AfmBOopRS3Ma3Ya5uYNUwb0f0VJf5Q77lVFsR9JFhuzj-EVR8MCLfuv- (accessed: 10.04.2024).
- 112. Benzoxazine Resin Technology. For Cost-Eff ective Composite Solutions [Electronic resource]. URL: https://www.ellsworth.com/globalassets/literaturelibrary/manufacturer/henkel-loctite/henkel-loctite-aerospace-brochure-benzoxazineresin-

technology.pdf?srsltid=AfmBOoqmMbCCoXRypGN1k06qbIG64kOGUkWSPaTE N8BKUSAnKhZ8RSWr (accessed: 10.04.2024).

- 113. Benzoxazine Materials [Electronic resource] // Composite Technology Development, Inc. URL: https://ctd-materials.com/engineeredmaterials/benzoxazines/ (accessed: 10.04.2024).
- 114. Сарычев И.А. Термореактивные связующие для материалов панелей пола летательных аппаратов / И.А. Сарычев, Е.А. Серкова, В.В. Хмельницкий, О.Б. Застрогина // ТРУДЫ ВИАМ. – 2019. – № 7(79). – С. 26–33.
- 115. PB1000 Modified Benzoxazine Resin (Next Generation ... Gurit [Electronic resource]. // yumpu.com. URL: https://www.yumpu.com/en/document/view/30417474/pb1000-modified-benzoxazine-resin-next-generation-gurit (accessed: 10.04.2024).
- 116. Stewart, R. New prepreg materials offer versatility, top performance / R. Stewart // Reinforced Plastics. – 2009. – Vol. 53. № 5. – P. 28–33.
- 117. Heat Resistance Improvement [Electronic resource] // SHIKOKU CHEMICALS CORPORATION. URL: https://kagaku.shikoku.co.jp/eng/products/resinadditive/resin-additive-p4/ (accessed: 10.04.2024).
- 118. Вайсбергер, А. Органические растворители. Физические свойства и методы очистки. / А. Вайсбергер, Э. Проскауэр, Дж. Риддик, Э. Тупс. –М.: Издательство иностранной литературы, 1958. – 520 с.
- 119. Vyazovkin, S. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data / S. Vyazovkin, A.K. Burnham, J.M. Criado et al. // Thermochimica Acta. – 2011. – Vol. 520. – № 1–2. – P. 1–19.
- 120. Vyazovkin, S. Linear and Nonlinear Procedures in Isoconversional Computations of the Activation Energy of Nonisothermal Reactions in Solids / S. Vyazovkin, D. Dollimore // Journal of Chemical Information and Computer Sciences. 1996. Vol. 36. № 1. P. 42–45.
- 121. Vyazovkin, S. Modification of the integral isoconversional method to account for variation in the activation energy / S. Vyazovkin // Journal of Computational Chemistry. 2001. Vol. 22. № 2. P. 178–183.

- 122. Liu, J. Anomalous Isomeric Effect on the Properties of Bisphenol F-based Benzoxazines: Toward the Molecular Design for Higher Performance / J. Liu, H. Ishida // Macromolecules. – 2014. – Vol. 47. – № 16. – P. 5682–5690.
- 123. Ručigaj, A. Curing of bisphenol A-aniline based benzoxazine using phenolic, amino and mercapto accelerators / A. Ručigaj, B. Alic, M. Krajnc, U. Sebenik // Express Polymer Letters. – 2015. – Vol. 9. – № 7. – P. 647–657.
- 124. Ručigaj, A. Kinetic investigation of a complex curing of the guaiacol bio-based benzoxazine system / A. Ručigaj, Š Gradišar, M. Krajnc // e-Polymers. 2016. Vol. 16. № 3. P. 199–206.
- 125. Bell, V.L. Polyimide structure–property relationships. II. Polymers from isomeric diamines / V.L. Bell, B.L. Stump, H. Gager // Journal of Polymer Science: Polymer Chemistry Edition. – 1976. – Vol. 14. – № 9. – P. 2275–2291.
- 126. Bell, V.L. Isomeric bismaleimides and polyaspartimides / V.L. Bell, P.R. Young // Journal of Polymer Science: Part A: Polymer Chemistry. – 1986. – Vol. 24. – № 10. – P. 2647–2655.
- 127. Kaushik, M. Free Volume Studies of Various Polymeric Systems Using Positron Annihilation and PVT-EOS Analyses: doct. ...diss / Mukul Kaushik. – Hattiesburg, 2011. – 178 P.
- 128. Liu, Y. Thermal degradation behavior and kinetics of polybenzoxazine based on bisphenol-S and aniline / Y. Liu, Z. Yue, Z. Li, Z. Liu // Thermochimica Acta. 2011.
 Vol. 523. № 1–2. P. 170–175.
- 129. Mei, Q. A Novel Acetylene-Functional/Silicon-Containing Benzoxazine Resin: Preparation, Curing Kinetics and Thermal Properties / Q. Mei, H. Wang, D. Tong et al. // Polymers. – 2020. – Vol. 12. – № 5. – P. 999.
- 130. Liu, Y. The polymerization behavior and thermal properties of benzoxazine based on o-allylphenol and 4,4'-diaminodiphenyl methane / Y. Liu, C. Liao, Z. Hao et al. // Reactive and Functional Polymers. – 2014. – Vol. 75. – P. 9–15.

- 131. Lázár, L. Recent Developments in the Ring-Chain Tautomerism of 1,3-Heterocycles / L. Lázár, F Fülöp // European Journal of Organic Chemistry. – 2003.
 – Vol. 2003. – № 16. – P. 3025–3042.
- Kim, H.-D. Model Compounds Study on the Network Structure of Polybenzoxazines / H.-D, Kim, H. Ishida // Macromolecules. – 2003. – Vol. 36. – № 22. – P. 8320–8329.
- 133. Kimura, H. Epoxy resin cured by bisphenol A based benzoxazine / H. Kimura, A. Matsumoto, K. Hasegawa et al. // Journal of Applied Polymer Science. 1998. Vol. 68. № 12. P. 1903–1910.
- 134. Wang, J. Investigation of the Polymerization Behavior and Regioselectivity of Fluorene Diamine-Based Benzoxazines / J. Wang, X.-Y. He, J.-T. Liu et al. // Macro Chemistry and Physics. – 2013. – Vol. 214. – № 5. – P. 617–628.
- 135. Russell, V.M. Study of the characterization and curing of benzoxazines using ¹³C solid-state nuclear magnetic resonance / V.M. Russell, J.L. Koenig, H.Y. Low, H. Ishida // Journal of Applied Polymer Science. 1998. Vol. 70. № 7. P. 1413–1425.
- 136. Kim, H.-D. Model Compounds Study on the Network Structure of Polybenzoxazines / H.-D. Kim, H. Ishida // Macromolecules. – 2003. – Vol. 36. – № 22. – P. 8320–8329.
- 137. Dong, H. Effect of N-substituents on the surface characteristics and hydrogen bonding network of polybenzoxazines / H. Dong, Z. Xin, X. Lu, Y. Lv // Polymer. – 2011. – Vol. 52. – № 4. – P. 1092–1101.
- 138. Uyar, T. Polymerisation and degradation of an aromatic amine-based naphthoxazine / T. Uyar, Z. Koyuncu, H.Ishida, J. Hacaloglu // Polymer Degradation and Stability. – 2008. – Vol. 93. – № 12. – P. 2096–2103.
- 139. Duff, J.C. 282. Reactions between hexamethylenetetramine and phenolic compounds. Part II. Formation of phenolic aldehydes. Distinctive behaviour of pnitrophenol / J.C. Duff, E.J. Bills // Journal of Chemical Society. – 1934. – P. 1305.

140. Tramontini, M. Mannich bases in polymer chemistry / M. Tramontini, L. Angiolini,
N. Ghedini // Polymer. – 1988. – Vol. 29. – № 5. – P. 771–788.

Приложение А (справочное)

Приложение Б (справочное)

Приложение В (справочное)

Приложение Г (справочное)

Приложение Д (справочное)

Приложение E (справочное)

¹Н и ¹³С ЯМР спектры бензоксазинового мономера оС-4,4'-d

Приложение Ж (справочное)

Приложение И (справочное)

¹Н и ¹³С ЯМР спектры бензоксазинового мономера 2,4Х-4,4'-d

Приложение К (справочное)

¹Н и ¹³С ЯМР спектры бензоксазинового мономера ВА-а

Приложение Л (справочное)

Приложение М (справочное)

Приложение Н (справочное)

