Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико-технологический университет имени Д.И. Менделеева»

На правах рукописи

Абдурахмонов Одилжон Эшмухаммад угли

Химический метод получения наноструктурированного сплава Nd-Fe-B

2.6.6. Нанотехнологии и наноматериалы

АВТОРЕФЕРАТ диссертации на соискание ученной степени кандидата технических наук

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Российский химико-технологический университет имени Д.И. Менделеева»

Научные руководители:

доцент, к.х.н.,

Мурадова Айтан Галандар кызы

ФГБОУ ВО «Российский химико-технологический университет имени Д.И. Менделеева», доцент кафедры наноматериалов и нанотехнологии чл.-корр. РАН, профессор, д.х.н.,

Юртов Евгений Васильевич

ФГБОУ ВО «Российский химико-технологический университет имени Д.И. Менделеева», кафедры наноматериалов и нанотехнологии

Официальные оппоненты:

доцент, д.х.н., Шкинев

Валерий Михайлович

ФГБУН «Института геохимии и аналитической химии Д.И. Вернадского РАН», ведущий научный сотрудник лаборатории концентрирования

профессор, д.т.н., Трошкина Ирина Дмитриевна

ФГБОУ ВО «Российский химико-технологический университет имени Д.И. Менделеева», профессор кафедры технологии редких элементов наноматериалов на их основе

старший научный сотрудник, к.х.н.,

Симоненко

Николай Петрович

ФГБУН «Институт общей и неорганической химии им. Н.С. Курнакова РАН», старший научный сотрудник лаборатории химии лёгких элементов и кластеров

Защита диссертации состоится «30» августа 2022 г., в 10⁰⁰ часов на заседании диссертационного совета РХТУ.2.6.03 при Федеральном государственном бюджетном образовательном учреждении высшего образования «Российский технологический университет имени Д.И. Менделеева» (125047, г. Москва, Миусская пл., д. 9) в конференц-зале.

С диссертацией можно ознакомиться в Информационно-библиотечном центре и на официальном сайте РХТУ им. Д.И. Менделеева и на сайте университета http://diss.muctr.ru

Автореферат разослан « » 2022 г.

Ученый секретарь диссертационного совета РХТУ.2.6.03, доцент, к.х.н.

Мурадова А.Г.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность и степень разработанности темы.

На сегодняшний день постоянные магниты Nd-Fe-B стали незаменимыми компонентами во многих высокотехнологичных продуктах, включая жесткие диски большой емкости, аппараты магнитно-резонансной томографии, ветряные генераторы и двигатели для электрических и гибридных транспортных средств. Магнитные поля, создаваемые редкоземельными магнитами сопоставимы с магнитными полями электромагнитов, при этом редкоземельные магниты не требуют затрат энергии и отличаются компактностью.

Магнитные характеристики постоянного магнита Nd-Fe-B зависят от методов их получения. Наноструктурирование сплава Nd-Fe-B позволяет получать магнитные материалы на их основе с высокими магнитными характеристиками.

Следует отметить, что для получения наноструктурированного сплава Nd-Fe-B требуется разработка новых методов получения. Известно, что основными методами получения наноструктурированных сплавов Nd-Fe-B являются физические, такие как: дуговая плавка, прядение из расплава, механическое измельчение. Однако физические методы имеют ряд недостатков, таких как: высокая энергозатратность, длительность процесса производства, сложность контроля гранулометрического состава. В отличие от физических, химические методы позволяют получать материалы с контролируемым гранулометрическим составом.

Известные на сегодняшний день химические методы получения наноструктурированного сплава Nd-Fe-B включают три основных этапа: синтез полупродуктов, восстановление полупродуктов до Nd-Fe-B, получение готового продукта. Следует отметить, что представленные в литературе работы по получению полупродуктов требуют использования органических соединений, что приводит к образованию зольного остатка в ходе термической обработки.

Поэтому актуальной задачей является разработка нового подхода к синтезу наноструктурированного сплава Nd-Fe-B без использования органических соединений на стадии получения полупродуктов.

Цель и основные задачи исследования.

Разработка химического метода получения наноструктурированного сплава Nd-Fe-B.

Поставленная цель определила необходимость решения следующих задач:

- получение наночастиц Nd_2O_3 , Fe_2O_3 и Fe_3BO_6 методом контролируемого осаждения из растворов. Установление влияния основных параметров на размер и форму получаемых наночастиц;

- получение наноструктурированных сплавов Nd-Fe-B из наночастиц Nd₂O₃, Fe_2O_3 и Fe_3BO_6 с помощью восстановительно-диффузионного процесса;
- исследование физико-химических характеристик порошков наночастиц и наноструктурированных сплавов Nd-Fe-B различного стехиометрического состава;
- получение и исследование нанокомпозита на основе наноструктурированного сплава Nd-Fe-B и ненасыщенной полиэфирной смолы.

Научная новизна работы.

- 1. Впервые для получения наноструктурированного сплава Nd-Fe-B были использованы порошки наночастиц Nd_2O_3 , Fe_2O_3 и Fe_3BO_6 , полученные методом осаждения без применения органических соединений. Разработанный метод позволяет получать наноструктурированный сплав Nd-Fe-B, не содержащий соединений углерода.
- 2. Предложен возможный механизм образования магнитотвердой фазы $Nd_2Fe_{14}B$ из порошков наночастиц Nd_2O_3 , Fe_2O_3 и Fe_3BO_6 , в двухстадийном восстановительно-диффузионном процессе. На первой стадии образуются наночастицы $NdFeO_3$, $NdBO_3$, α - Fe_2O_3 , на второй стадии образуются частицы, состоящие из фаз $Nd_2Fe_{14}B$, α -Fe и CaO.
- 3. Получен нанокомпозит на основе наноструктурированного сплава Nd-Fe-B, обладающий высокими магнитными характеристиками, которые сопоставимы с характеристиками наноструктурированного сплава Nd-Fe-B легированного Dy и Co.

Теоретическая и практическая значимость.

- 1. Разработанный химический метод получения наноструктурированного сплава Nd-Fe-B, имеет практические рекомендации для создания высокоэффективных постоянных магнитов Nd-Fe-B.
- 2. Показана перспективность использования композиции, состоящей из 98 мас.% наноструктурированного сплава $Nd_{16}Fe_{76}B_8$ и 2 мас.% ненасыщенной полиэфирной смолы. Полученный нанокомпозит характеризуется магнитотвердыми свойствами при комнатных температурах (H_c =7,7 к 2 и M_r =70 $A\cdot m^2$ /кг) и может быть использован в областях, предъявляющих высокие требования к магнитным характеристикам материала.
- 3. Результаты испытаний нанокомпозитов Nd-Fe-B с гальваническим и полимерным покрытиями в солевом тумане показали высокую коррозионную стойкость, соответствующую международному стандарту ISO 9227:2017(E).

Положения, выносимые на защиту.

- 1. Результаты исследования этапов синтеза наноструктурированного сплава Nd-Fe-B.
- 2. Результаты исследования механизма восстановительно-диффузионного процесса образования магнитотвердой фазы Nd₂Fe₁₄B.

3. Результаты исследования магнитных свойств сплава Nd-Fe-B в зависимости от стехиометрического состава исходных веществ.

Методология и методы исследования.

Методологическая основа диссертации представлена анализом современной научной литературы по изучаемой проблеме и общепринятыми методами проведения лабораторных исследований (экспериментов).

работе использованы следующие основные методы исследования: просвечивающая электронная микроскопия (ПЭМ), сканирующая электронная микроскопия (СЭМ), электронно-зондовый микроанализ (ЭЗМ), рентгенофазовый и $(P\Phi A/PCA)$, мессбауэровская рентгеноструктурный анализ спектроскопия, инфракрасная спектроскопия (ИК-спектроскопия), магнитометрия, дифференциальносканирующая калориметрия и термогравиметрия (ДСК и ТГА), метод динамического светорассеяния (ДСР).

Степень достоверности и апробация результатов.

Достоверность обеспечена использованием комплекса взаимодополняющих современных апробированных методов исследования СЭМ, ПЭМ, ДСК/ТГА, ИК-спектроскопия, ЭЗМ, мессбауэровская спектроскопия, магнитометрия, воспроизводимостью результатов экспериментов. Интерпретация методов исследования основана на современных представлениях о химических методах получения НСС Nd-Fe-B. Полученные результаты согласуются с результатами других авторов, изучающих физические и химические методы получения магнитных материалов на основе сплава Nd-Fe-B.

Основные результаты диссертационной работы докладывались и обсуждались на: Международных конгрессах молодых ученых по химии и химической технологии Москва «МКХТ-2019», «МКХТ-2020» и «МКХТ-2021»; ХІ и ХІІ Ежегодных конференциях Нанотехнологического общества России (Москва, 2020 и 2021); VІІ Всероссийской конференции по наноматериалам «НАНО 2020» (Москва, 2020); ХV Всероссийской научно-технической конференции «Научно-практические проблемы в области химии и химических технологий» (Апатиты, 2021), ХХІІІ Международная научно-практическая конференция студентов и молодых ученых «Химия и химическая технология в ХХІ веке» (Томск, 2022).

Публикации.

По материалам исследований, обобщенных автором в диссертации, опубликовано 13 научных работ, в том числе 3 статьи, индексируемые в международных базах данных WoS, Scopus и представленные в научных журналах из списка ВАК РФ, 10 в сборниках научных трудов и докладов на всероссийских и международных конференциях.

Личный вклад автора.

На всех этапах работы автор принимал непосредственное участие в разработке и планировании исследования, выполнении экспериментов, анализе и интерпретации результатов, формулировании выводов. Подготовка материалов для публикации проводилась совместно с научным руководителем.

Структура и объем диссертации.

Диссертационная работа изложена на 158 страницах, включая 15 таблиц и 69 рисунков. Библиографический список насчитывает 189 наименований. Диссертация состоит из введения, литературного обзора, методической и экспериментальной части, выводов, списка цитируемой литературы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулирована ее цель и основные задачи, описана научная новизна и практическая значимость работы. Охарактеризованы основные положения, выносимые на защиту, личный вклад автора, апробация результатов и публикации по представленной работе. Описана структура и объем диссертации.

В первой главе проведен обзор научной литературы, в котором рассмотрены свойства магнитных материалов, различные методы получения полупродуктов и наноструктурированных сплавов (НСС) Nd-Fe-B, потребности рынка в магнитных материалах. Особое внимание уделено химическим методам получения НСС и механизму образования магнитотвердой фазы Nd₂Fe₁₄B. Изложены сведения о направлениях работ и достигнутых результатах магнитных характеристик полученного НСС Nd-Fe-B.

Во второй главе описаны методики синтеза наночастиц Nd_2O_3 , Fe_2O_3 , Fe_3BO_6 , Nd-Fe-B@SiO₂, HCC Nd-Fe-B и нанокомпозитов (HK) на их основе. Перечислены методы исследования и испытания полученных материалов.

В третьей главе представлены результаты исследования физико-химических характеристик полученных наночастиц Nd_2O_3 , Fe_2O_3 и Fe_3BO_6 , Nd-Fe-B@ SiO_2 . Также представлены исследования физико-химических характеристик HCC и HK Nd-Fe-B. Установлено влияние состава и температуры на магнитные свойства HCC и HK Nd-Fe-B.

1. Получение и исследование свойств наночастиц Nd₂O₃, Fe₂O₃ и Fe₃BO₆ 1.1 Наночастицы Nd₂O₃.

Наночастицы Nd_2O_3 были получены методом осаждения $Nd(OH)_3$ с последующим термическим отжигом. Результаты ДСР исследования влияния концентрации NaOH на размер получаемых наночастиц $Nd(OH)_3$ приведены в таблице 1. Показано, что увеличение концентрации NaOH приводит к уменьшению размера наночастиц $Nd(OH)_3$.

С целью исследования влияния температуры отжига на кристаллизацию полученных наночастиц Nd(OH)₃ проводили ДСК/ТГ анализ. По данным ДСК, определили несколько экзотермических эффектов при температурах 330, 635 и 795°С. По данным ТГ анализа, общая потеря массы составила 24,5 % (рисунок 1).

Таблица 1 - Влияние концентрации NaOH на средний размер наночастиц Nd(OH)₃

Концентрации NaOH, M	Средний размер частиц Nd(OH) ₃ , по данным ДСР,		
	нм		
0,02	-		
0,03	1085±78		
0,04	250±59		
0,05	150±42		
0,06	120±35		
0,08	80±22		
0,10	60±12		
0,12	30±6		

Для подробного исследования изменений, происходящих в кристаллической структуре, был проведен отжиг полученных наночастиц при температурах 330, 635 и 795°C соответственно. Качественный состав Nd_2O_3 подтверждён методом $P\Phi A$ (рисунок 2).

Рисунок 1 - Кривые ДСК/ТГ анализа для полученного Nd(OH)₃

На рисунке 2 приведены дифрактограммы соответствующих соединений. Результаты РФА полученного порошка при температуре 100°С показали образование одной кристаллической фазы Nd(OH)₃ гексагональной структурой (рисунок 2a).

Ha дифрактограмме полученного порошка температуре 330°C расположение пиков соответствует гексагональной структуре $Nd(OH)_3$, ЭТОМ при наблюдается уменьшение степени кристалличности образце(рисунок 2б).

Рисунок 2 - Дифрактограммы нанопорошков полученных при температурах: а - 100° С, б - 330° С, в - 635° С, г - 795° С. Стандартные дифрактограммы: Nd(OH)₃ - JCPDS №06- 0601 и Nd₂O₃ - JCPDS №43-1023

С помощью ПЭМ было проведено исследование морфологии синтезированных наночастиц. Полученные при температуре 330°C

Увеличение температуры до 635° С приводит к образованию двух фаз NdOOH и Nd₂O₃, но при этом наблюдается доля аморфной фазы в образце (рисунок 2в).

Дальнейшее увеличение температуры до 795°C способствует полному переходу NdOOH в Nd_2O_3 (рисунок 2Γ).

Рисунок 3 - ПЭМ изображение и распределение по размерам наностержней (по длине) полученных при температурах: а, б - 330°C, в, г - 635°C, д, е - 795°C

частицы имели форму наностержней с диаметром 4 нм и длиной 29 нм соответственно (рисунок 3а, б). При повышении температуры до 635°C наблюдалось увеличение диаметра и длины наностержней до 9 и 53 нм соответсвенно (рисунок 3в, г). При последующем повышении температуры до 795°C диаметр составлял 28 нм, а длина — 118 нм (рисунок 3д, е).

1.2 Наночастицы Fe_2O_3 . Наночастицы Fe_2O_3 были получены методом осаждения FeOOH с последующим термическим отжигом.

Для исследования влияния температуры отжига на кристаллизацию FeOOH проводили ДСК/ТГ анализ.

Термический анализ полученного нанопорошка **FeOOH** проводили от комнатной температуры ДΟ 600°C (рисунок 4). По данным ТГА, общая потеря массы составила 9,6 %. По данным ДСК, был выявлен один эндотермический пик при температуре 94°C два экзотермических пика при температурах 360 и 540°С.

Рисунок 4 - Кривые ДСК/ТГ анализа, полученных FeOOH

Качественный состав Fe_2O_3 подтверждён методом $P\Phi A$ (рисунок 5). Для этого проводили отжиг синтезированных наночастиц FeOOH при температурах 360 и 540°C. На дифрактограмме нанопорошков, полученных при температуре 360°C, было зафиксировано два пика, соответствующих фазе α - Fe_2O_3 (рисунок 5a). Было установлено, что дифрактограмма нанопорошков, полученных при температуре 540°C (рисунок

Рисунок 5 - Дифрактограммы нанопорошков α -Fe₂O₃: а - полученных при температуре 360°C, б - 540°C, стандартная дифрактограмма α -Fe₂O₃ - JCPDS № 96- 210-1168

Рисунок 6 - ПЭМ изображение наночастиц α -Fe₂O₃ полученных при температуре 540° C

5б), согласуется с литературными данными характерными для гематита. Полученная фаза α -Fe₂O₃ имеет тригональную структуру. Других соединений и модификаций железа в полученном образце не наблюдалось.

На рисунке 6 представлено ПЭМ-изображение НЧ, полученных при температуре отжига 540° С. Установлено, что форма частиц близка к сферической, средний размер наночастиц составляет 55 ± 11 нм.

1.3 Наночастицы Fe₃BO₆

Наночастицы Fe_3BO_6 были получены взаимодействием $FeCl_3$ и $NaBH_4$. Предположительная схема реакции представлена ниже:

 $3FeCl_3+9NaBH_4+30H_2O \rightarrow Fe_3BO_6 \downarrow +8B(OH)_3+36H_2\uparrow +9NaCl$

В работе проведено исследование влияния концентрации $NaBH_4$ на размер наночастиц Fe_3BO_6 . Было установлено, что полученные наночастицы Fe_3BO_6 при

концентрации 0,01~M NaBH4 имеют сферическую форму, средний размер, по данным ДСР, составляет $56\pm13~$ нм. Наночастицы Fe_3BO_6 , полученные при концентрации 0,02~M NaBH4, также имеют сферическую форму, а средний размер равен $39\pm7~$ нм. Для дальнейшего исследования использовали наночастицы полученные при концентрации 0,02~M NaBH4.

Влияние температуры отжига на кристаллизацию НЧ Fe_3BO_6 исследовали с помощью методов ДСК/ТГ. Термический анализ полученного соединения проводили от комнатной температуры до 600° С, общая потеря массы составила 2,42%. На кривой ДСК были зафиксированы три пика, один эндотермический пик при 79 °С и два экзотермических пика при температурах 300, 530°С (рисунок 7).

Рисунок 7 - Кривые ДСК и ТГ анализа образца Fe_3BO_6

Качественный состав Fe₃BO₆ подтверждён методом РФА (рисунок 8). Для этого проводили отжиг полученного Fe₃BO₆ при температурах 300 и 530°C. На дифрактограмме нанопорошков сушки был зафиксирован один отчетливый пик, он совпадает с Fe₃BO₆ (рисунок 8a). Доля аморфной фазы данного образца 95%. составила Ha дифрактограмме полученных нанопорошков при температуре 300°С зафиксированы два Доля относящихся Fe₃BO₆. аморфной фазы данного образца составляет 86%.

Дифрактограмма нанопорошков полученных при температуре 530°C представлена на рисунке 8в. По данным

Рисунок 8 - Дифрактограммы нанопорошков Fe_3BO_6 полученных при температурах: а - $100^{\circ}C$, б - $300^{\circ}C$ и в - $530^{\circ}C$

Рисунок 9 - ПЭМ изображение наночастиц Fe₃BO₆·α-Fe₂O₃ полученных при температуре 530°C

РФА, нанопорошок состоит из 74,4 мас.% α -Fe₂O₃ и 25,6 мас.% Fe₃BO₆.

На рисунке 9 представлено ПЭМ-изображение НЧ, полученных при температуре 530° С. Установлено, что форма частиц близка к сферической, средний размер наночастиц составляет 50 ± 10 нм.

2. Получение и исследование свойств наноструктурированного сплава Nd-Fe-B

2.1 Получение наноструктурированного сплава Nd-Fe-B восстановительно-диффузионным процессом

Получение HCC Nd-Fe-B проводили в три этапа.

На первом этапе были получены $H4\ Nd_2O_3$, Fe_2O_3 и Fe_3BO_6 .

Для определения количественного состава нанопорошки исследовали методом масс-спектрометрии с индуктивносвязанной плазмой (ИСП-МС). Результаты исследования представлены в таблице 2.

По результатам ИСП-МС анализа нанопорошки Nd_2O_3 : Fe_3BO_6 : Fe_2O_3 брали в стехиометрическом соотношении $1{:}1{:}2{,}5$ с целью получения фазы $Nd_2Fe_1{4}B$.

На втором этапе проводили двухстадийный восстановительнодиффузионный процесс.

На первой стадии проводили термическую обработку оксидов при температуре 900°C в потоке газообразной смеси 95%Аг + результатам 5%H₂. По наблюдалось образование фаз NdFeO₃, α -Fe₂O₃ (рисунок 10), $NdBO_3$ полученных средний размер 95±15 наночастиц составляет (рисунок 11).

Реакции, происходящие на этой стадии можно представить следующим образом:

$$2Fe_3BO_6+H_2 \rightarrow 2Fe_3O_4+B_2O_3+H_2O$$
 (1)
 $\Delta H_{\text{расчетная}} = -108 \text{ кДж/моль}$
 $Nd_2O_3 + 3H_2 \rightarrow 2Nd + 3H_2O$ (2)

$$\Delta H_{\text{расчетная}} = 711 \text{кДж/моль}$$
 $3\text{Nd} + 3\text{Fe}_3\text{O}_4 \longrightarrow 3\text{NdFeO}_3 + 3\text{Fe}_2\text{O}_3$ (3) $\Delta H_{\text{расчетная}} = 482 \text{ кДж/моль}$

$$2Nd+B_2O_3 \rightarrow 2NdBO_3$$
 (4) $\Delta H_{\text{расчетная}} = 881 \text{ кДж/моль}$

Таблица 2 — Элементный состав полученных $H4\ Nd_2O_3,\ Fe_2O_3\ u\ Fe_3BO_6$

Наночастицы	Fe,	Nd,	В,
	мас.%	мас.%	мас.%
Nd_2O_3	0,13	53,82	0,06
Fe_2O_3	60,13	0,05	0,18
Fe ₃ BO ₆	73,46	0,04	4,08

Рисунок 10 - Дифрактограмма наночастиц смеси: $NdFeO_3$, $NdBO_3$ и α - Fe_2O_3 и данные JCPDS

Рисунок 11 - СЭМ изображение наночастиц смеси NdFeO₃, NdBO₃ и α-Fe₂O₃

На второй стадии восстановительно-диффузионного процесса для образования фазы Nd₂Fe₁₄B был использован гидрид кальция (CaH₂).

Для исследования механизма реакции восстановительно-диффузионного процесса проводили термический анализ. Для этого готовили образец, состоящий из смеси НЧ NdFeO₃, NdBO₃, α - Fe₂O₃ и CaH₂. Далее проводили измерение от комнатной температуры до 900°C в атмосфере азота со скоростью нагрева 10°C/мин. На кривой ДСК зафиксированы четыре экзотермических пика при температурах 350, 435, 690 и 800°C соответственно (рисунок 12а). По данным ТГ анализа, общая потеря массы составила 13,19% (рисунок 12б).

Рисунок 12 - Результаты анализа нанопорошков смеси NdFeO₃, NdBO₃, α - Fe₂O₃ и CaH₂, a - ДСК и δ - ТГ

Для подробного исследования механизма образования HCC Nd-Fe-B проводили

восстановительнодиффузионный процесс при 350, температурах 435, 690 и 800°С в аргона среде В течение ч. Качественный состав полученных образцов определен методом РФА (рисунок 13).

По результатам РФА. восстановленный при температуре 350°C образец состоит из смеси 46 мас.% CaO. 32,4 мас.% NdFeO₃, 12,1 mac.% α-Fe₂O₃, 3,9 мас.% NdBO₃ и 5,6 мас.% α-Fe (рисунок 13a).

Рисунок 13 - Дифрактограмма НЧ, NdFeO₃, NdBO₃ и α- Fe₂O₃ с восстановителем – CaH₂, отожженного при температурах: а - 350°C, б - 435°C, в - 690°C и г - 800°C в атмосфере Аг в течение 2 ч. Обозначения ▲- NdFeO₃, ● - Fe₂O₃, ■ - NdBO₃, ◆ - CaO, ◆ - Fe, ▼ - NdH₂, ▼ - Nd₂O₃, ▼ - B, ▼ - Nd₂Fe₁₄B

Регистрация пиков α -Fe свидетельствует о восстановлении Fe₂O₃ (уравнение 5). Образец, восстановленный при температуре 435°C, состоит из 48,1 мас.% CaO, 32,4 мас.% NdFeO₃, 10,1 мас.% α -Fe₂O₃, 2,9 мас.% NdBO₃, 6,2 мас.% α -Fe и 0,3 мас.% NdH₂ (рисунок 13б). Снижение содержания Fe₂O₃ указывает на дальнейшее восстановление до α -Fe. Образование новой фазы NdH₂ свидетельствует о начале восстановления фазы NdBO₃ (уравнение 6).

Дифрактограмма восстановленного образца при температуре 690° С указывает на то, что образец состоит из 54,4 мас.% CaO, 1,4% NdFeO₃, 31,3 мас.% α -Fe и 5,3 мас.% NdH₂ 5,6 мас.% Nd₂O₃ и 2 мас.% В (рисунок 13в). Снижение содержания NdFeO₃ указывает на дальнейшее восстановление до α -Fe и NdH₂ (уравнение 7). Шум спектра возрос из-за образования аморфного бора (уравнение 6). Также, на дифрактограмме был зафиксирован пик Nd₂O₃. Это связано с окислением некоторого количества NdH₂.

По данным дифрактограммы, образец восстановленный при температуре 800° С (рисунок 13г) состоит из 52,4 мас.% CaO, 10,9 мас.% α -Fe и 36,7 мас.% $Nd_2Fe_{14}B$ (уравнение 8).

На основании данных РФА предложен следующий механизм образования фазы $Nd_2Fe_{14}B$:

при температуре 350°C:

$$2\text{Fe}_2\text{O}_3 + 3\text{CaH}_2 \xrightarrow{A} 4\text{Fe} + 3\text{CaO} + 3\text{H}_2\text{O}$$
 (5) при температуре 435°C:

NdBO₃+2CaH₂
$$\xrightarrow{\Delta}$$
NdH₂+B+2CaO+H₂O (6) при температуре 690°C:

$$NdFeO_3+2CaH_2 \xrightarrow{\Delta} NdH_2+Fe+2CaO+H_2O$$
 (7) при температуре $800^{\circ}C$:

$$2NdH_2+14Fe+B \xrightarrow{\Delta} Nd_2Fe_{14}B+H_2$$
 (8)

Рисунок 14 - Дифрактограмма промытого HCC Nd-Fe-B: + - Nd₂Fe₁₄B, * - Fe

Входе восстановительнодиффузионного процесса помимо основного продукта HCC Nd-Fe-В образуется побочный продукт – CaO.

На третьем этапе провели удаление СаО. Для удаления СаО использовали раствор NH₄Cl в C₂H₅OH. Качественный состав HCC Nd-Fe-B после промывки был определен методом РФА (рисунок 14). Было установлено, что HCC Nd-Fe-B состоит из 76.1 мас.% Nd₂Fe₁₄B и 23.9 мас.% Fe.

При исследовании наночастиц с помощью ПЭМ (рисунок 15) было установлено, что HCC Nd-Fe-B состоит из

Рисунок 15 - ПЭМ изображение НСС Nd-Fe-B

частиц неправильной формы со средним размером 110±35 нм.

2.2 Исследование зависимости магнитных свойств от состава HCC Nd-Fe-B

Для изучения зависимости магнитных характеристик HCC Nd-Fe-B от содержания фаз: $Nd_2Fe_{14}B$, α -Fe и Nd – изменяли стереохимическое соотношение HU Nd_2O_3 , Fe_2O_3 и Fe_3BO_6 .

Коэрцитивная сила зависит от содержания фазы $Nd_2Fe_{14}B$. Для улучшения коэрцитивной силы магнитов путем уменьшения магнитомягкой фазы α -Fe были получены порошки HCC со следующим стехиометрическим соотношением: $Nd_{12}Fe_{84}B_6$, $Nd_{14}Fe_{80}B_6$, $Nd_{16}Fe_{76}B_8$ и $Nd_{16}Fe_{72}B_8$. Петли гистерезиса и магнитные характеристики HCC со стехиометрическими составами: $Nd_{12}Fe_{84}B_6$, $Nd_{14}Fe_{80}B_6$, $Nd_{16}Fe_{72}B_8$ – представлены на рисунке 16 и в таблице 3.

Порошок НСС $Nd_{12}Fe_{84}B_6$ после процесса промывки, по данным $P\Phi A$, состоит из смеси магнитотвердой фазы 76,1 мас.% $Nd_2Fe_{14}B$ и магнитомягкой фазы 23,9% α -Fe (рисунок 14). Результаты $P\Phi A$ порошка HCC $Nd_{14}Fe_{80}B_6$ показали наличие двух фаз с содержанием: 91,1% $Nd_2Fe_{14}B$ и 8,9% α -Fe. По дифрактограмме образец HCC $Nd_{16}Fe_{76}B_8$ состоит из одной фазы $Nd_2Fe_{14}B$. По данным дифрактограммы, порошка HCC $Nd_{16}Fe_{72}B_8$, было установлено наличие двух фаз с содержанием: 90,2% $Nd_2Fe_{14}B$ и 9,8% NdH_2 .

Рисунок 16 - Петля магнитного гистерезиса для HCC Nd-Fe-B, стехиометрического состава: а - $Nd_{12}Fe_{84}B_{6}$, б - $Nd_{14}Fe_{80}B_{6}$, в - $Nd_{16}Fe_{76}B_{8}$, и г - $Nd_{16}Fe_{72}B_{8}$

Было установлено, что при увеличении содержания Nd и B (в HCC Nd₁₄Fe₈₀B₆ и Nd₁₆Fe₇₆B₈) наблюдается увеличение содержания магнитотвердой фазы Nd₂Fe₁₄B. Коэрцитивная сила НСС Nd₁₆Fe₇₆B₈ увеличивалась, достигая максимального значения $H_c = 8439 \ \Im$ компенсируя уменьшение значений удельной намагниченности насыщения до $M_s=109.00 \text{ A}\cdot\text{м}^2/\text{к}\Gamma$ И остаточной $M_r = 78,01$ $\mathbf{A} \cdot \mathbf{M}^2 / \mathbf{K} \Gamma$ намагниченности (рисунок 16). Уменьшение

Таблица 3 - Магнитные характеристики различных стехиометрических составов HCC Nd-Fe-B

Состав	Hc,	Ms,	M _r ,
	Э	$\mathbf{A} \cdot \mathbf{m}^2 / \mathbf{k} \Gamma$	$\mathbf{A} \cdot \mathbf{m}^2 / \mathbf{k} \Gamma$
Nd ₁₂ Fe ₈₄ B ₆	3295	132,01	99,53
$Nd_{14}Fe_{80}B_6$	4890	121,22	89,99
Nd ₁₆ Fe ₇₆ B ₈	8439	109,00	78,01
Nd ₁₆ Fe ₇₂ B ₈	8355	73,02	51,01

намагниченности связано с уменьшением содержания фазы α -Fe. По данным РФА, HCC $Nd_{16}Fe_{76}B_8$ состоит из фазы $Nd_2Fe_{14}B$, при этом фазы α -Fe не наблюдалось.

Было установлено, что, контролируя содержание Nd и B, можно получить сплавы Nd-Fe-B с высокими магнитными характеристиками (таблица 3). Для дальнейших исследований был выбран образец состава $Nd_{16}Fe_{76}B_8$.

Кристаллическая структура **HCC** Nd₁₆Fe₇₆B дополнительно изучена помощью РФА с последующей обработкой данных с помощью программ FullProff и Vesta. Было установлено, что ячейка Nd₂Fe₁₄B состоит ИЗ четырех слоев, 68 состоящих ИЗ атомов тетрагональной структурой определено $P4_2/mnm$. Было расположение атомов Nd, Fe и B в кристаллической решетке расстояние между ними.

проведено

Было

Рисунок 17 - Мессбауэровский спектр образца HCC Nd₁₆Fe₇₆B₈

исследования структуры HCC $Nd_{16}Fe_{76}B$ с помощью мессбауэровской спектроскопии, в режиме постоянного ускорения. Было установлено, что атомы Fe в $Nd_2Fe_{14}B$ расположены в шести типах структурно неэквивалентных позиций: k_1 , k_2 , j_1 , j_2 , e и e (рисунок 17). Два типа позиций занимают атомы Nd - f и e, и один тип позиций e атомы бора. Мессбауэровский спектр $Nd_2Fe_{14}B$ при e может быть описан в модели шести секстетов, соответствующих шести возможным состояниям атомов Fe. Позиций e e e e e e0 составляют соответственно 16, 16, 8, 8, 4 и 4 (всего 56 атомов железа), вклад соответствующих подспектров в общий спектр составляет 4:4:2:2:1:1.

3. Получение и исследование свойств композита на основе Nd-Fe-B

Для получения компактного постоянного магнита порошок HCC $Nd_{16}Fe_{76}B_8$ перемешивали с ненасыщенной полиэфирной смолой ($H\Pi \)$ и прессовали в магнитным поле. Далее полученный композит подвергали термическому отжигу для отвержения $H\Pi \)$ С.

Исследование влияния рабочей температуры (от 280 до 400 K) на намагниченность и коэрцитивную силу магнитов Nd-Fe-B представлено на рисунке 18. Следует отметить, что с увеличением температуры уменьшались все магнитные характеристики (таблица 4).

Рисунок 18 - Петли магнитного гистерезиса НК Nd-Fe-B, полученные в поле 3Тл при температурах 280-400 К

Таблица 4 - Магнитные характеристики НК Nd-Fe-B в интервале температур 20- 400 К

150 -		
	HK Nd-Fe-B	' '
100 -		-
-		
<u>~</u> 50-		
M, (A^*M^2/kt)	M. Committee of the com	
* °]		
≥ -50 -	////	—20 K
		100 K
-100 -		160 K 200 K
		260 K
-150		
	-30000 -20000 -10000	0 10000 20000 30000
	п,	(Э)
	10 1	

Рисунок 19 - Петли магнитного гистерезиса НК Nd-Fe-B, полученные в поле 3Тл при температурах 20-260 К

Температура,	Hc,	M _S ,	M _r ,
К	Э	$\mathbf{A}\cdot\mathbf{m}^2/\mathbf{k}\Gamma$	$\mathbf{A}\cdot\mathbf{m}^2/\mathbf{k}\Gamma$
20	13518	109,60	71,56
100	13996	113,66	75,46
160	12991	113,15	76,91
200	11459	112,80	76,40
260	9161	110,53	72,75
280	8426	109,38	71,05
300	7772	109,25	69,69
320	7166	107,98	67,82
340	6607	106,52	65,61
360	6065	104,69	63,16
380	5554	102,36	60,53
400	5043	99,42	57,30

Магнитные характеристики НК

Nd-Fe-B были измерены и при низких температурах. Петли гистерезиса НК Nd-Fe-B при низких температурах представлены на рисунке 19. В таблице 4 представлены магнитные характеристики НК Nd-Fe-B при температурах 20-400 К.

Для повышения коррозионной стойкости на НК Nd-Fe-B были нанесены покрытия, Ц6 (цинк), Ц6хр (цинк-хроматирование), H9M10 (никель-медь), Н9О-Ви6 (никель - олово-висмут), H9M10H9 (никель-медь-никель), полимерное (НПЭС). Покрытые НК Nd-Fe-B подвергали испытанию на коррозионную стойкость в камере соляного тумана в течение 0, 48, 168, 336 и 744 ч. После испытания в течение 744 ч образцы, покрытые Ц6, Н9О-Ви6, Н9М10Н9 и НПЭС, успешно прошли испытание на коррозию.

ЗАКЛЮЧЕНИЕ

- 1. Разработан химический метод получения наноструктурированного сплава Nd-Fe-B из порошков наночастиц Nd_2O_3 , Fe_2O_3 и Fe_3BO_6 .
- 2. Установлено влияние температуры на образование наночастиц Nd_2O_3 , Fe_2O_3 и Fe_3BO_6 . При температуре более 795° С происходит кристаллизация наночастиц Nd_2O_3 , при этом образуются частицы со стержнеобразной формой с диаметром 28 и длиной 118 нм. При температуре более 540° С происходит полная кристаллизация наночастиц α - Fe_2O_3 , полученные частицы имеют эллипсоидальную форму со средним диаметром 55 нм. Кристаллизация НЧ состава 74,4 мас. % α - Fe_2O_3 и 25,6 мас. % Fe_3BO_6 происходит при температуре более 530° С, полученные частицы имеют неправильную форму, средний диаметр частиц составляет 50 нм.
- 3. Предложен механизм образования наноструктурированного сплава Nd-Fe-B из наночастиц Nd_2O_3 , Fe_2O_3 и Fe_3BO_6 . Установлено, что на первой стадии восстановительно-диффузионного процесса образуются нанопорошки $NdFeO_3$, $NdBO_3$, α -Fe $_2O_3$. На второй стадии восстановительно-диффузионного процесса образуются нанопорошки, состоящие из фаз 36,7 мас.% Nd_2Fe_14B , 10,9 мас.% α -Fe и 52,4 мас.% CaO. Полученный после удаления CaO, наноструктурированный сплав Nd-Fe-B состоит из магнитотвердой фазы Nd_2Fe_14B 76,1 мас.% и магнитомягкой фазы α -Fe 23,9 мас.%.
- 4. Установлено, что с увеличением содержания Nd и B наблюдается повышение доли магнитотвердой фазы $Nd_2Fe_{14}B$ в наноструктурированном сплаве Nd-Fe-B. При этом коэрцитивная сила увеличивалась от 3,3 до 8,4 кЭ, удельная намагниченность насыщения уменьшалась до M_s =109,00 $A \cdot m^2/k\Gamma$ и остаточная намагниченность до M_r =78,01 $A \cdot m^2/k\Gamma$. Выявлено, что уменьшение намагниченности связано с уменьшением содержания фазы α -Fe.
- 5. Получен нанокомпозит на основе ненасыщенной полиэфирной смолы и наноструктурированного сплава $Nd_{16}Fe_{76}B_8$. Показано, что с увеличением температуры от 300 до 400 К изменялись магнитные характеристики: коэрцитивная сила от 7,7 до 5 к Θ и удельная остаточная намагниченность от 70 до 57 $A \cdot M^2 / K\Gamma$.
- 6. Получены нанокомпозиты Nd-Fe-B с гальваническим и полимерным покрытиями. По результатам испытаний в солевом тумане образцы покрытые Ц6, H9O-Bu6, H9M10H9 и полимерными покрытиями успешно прошли испытание на коррозионную стойкость согласно международному стандарту ISO 9227:2017(E).
- 7. Разработаны коррозионностойкие магнитные композиты на основе ненасыщенной полиэфирной смолы и наноструктурированного сплава $Nd_{16}Fe_{76}B_8$ (H_c =7,7 кЭ, M_s =109,25 $A\cdot m^2/\kappa \Gamma$, M_r =69,69 $A\cdot m^2/\kappa \Gamma$). Показана перспективность использования композита в качестве материала постоянного магнита.

Рекомендации и перспективы дальнейшей разработки темы

Разработанный химический метод позволяет получать постоянные магниты на основе HCC Nd-Fe-B. Полученные результаты экспериментальных исследований служат важным ориентиром для работ по химическому методу получения HCC Nd-Fe-B. В будущем предстоит работа по получению легированного HCC Nd-Fe-B.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ АВТОРОМ

- 1. Abdurakhmonov O.E., Yurtov E.V., Savchenko E.S., Savchenko A.G. Chemical synthesis and research nanopowder of magnetic hard alloy Nd₁₅Fe₇₈B₇ // Journal of Physics Conference Series. 2020. T. 1688. № 1. P. 012001-1-012001-6. DOI: 10.1088/1742-6596/1688/1/012001. (Web of Science, Scopus)
- 2. Abdurakhmonov O.E., Alisultanov M.E., Vertaeva D.A., Muradova A.G. The Effect of Annealing Temperature on Crystallization of Nd₂O₃ Nanoparticles Synthesized by the Deposition Method // Russian Journal of Inorganic Chemistry. 2022. Vol. 67, № 7, P. 1032–1038. DOI: 10.1134/S0036023622070026. (Web of Science, Scopus)
- 3. Абдурахмонов О.Э., Алисултанов М.Э., Вертаева Д.А., Шарапаев А.И., Мурадова А.Г. Химический метод синтеза нанопорошков Nd₂Fe₁₄B // Химическая промышленность сегодня. 2022. Т. 1. С. 14-25. DOI: 10.53884/27132854_2022_1_14. (*Chemical Abstracts*)

В сборниках научных трудов в тезисах докладов на международных и всероссийских конференциях

- 4. Абдурахмонов О.Э., Юртов Е.В., Савченко А.Г., Еремеева Ж.В. Химический синтез твердых магнитных наночастиц Nd₂Fe₁₄B // Сб. научн. трудов «Успехи в химии и химической технологии». 2019. Т. XXXIII. № 10. С. 5-7.
- 5. Абдурахмонов О.Э., Юртов Е.В., Савченко А.Г., Савченко Е.С. Химический синтез и исследование нанопорошков магнитотвёрдого сплава Nd₁₅Fe₇₈B₇ // Сб. тез. докл. VII Всероссийская конференция по наноматериалам «НАНО 2020» Москва, 2020. С. 197-198.
- 6. Алисултанов М.Э., Абдурахмонов О.Э., Юртов Е.В., Савченко Е.С., Савченко А.Г. Механохимический синтез и исследование магнитных нанопорошков Nd₂Fe₁₄B // Сб. научн. трудов «Успехи в химии и химической технологии». 2020. Т. XXX IV. № 10. С. 60-63.
- 7. Абдурахмонов О.Э., Юртов Е.В., Савченко А.Г., Савченко Е.С. Механохимический синтез нанокомпозиционных магнитных материалов $Nd_2Fe_{14}B$ // Сборник тезисов XI ежегодной конференции Нанотехнологического общества России. Москва, 2020. С. 69-70.
- 8. Абдурахмонов О.Э., Алисултанов М.Э., Юртов Е.В. Химический синтез наноструктурированного магнитотвердого сплава системы Nd-Fe-В // Научнопрактические проблемы в области химии и химических технологий». Труды Кольского Научного центра 2021 №2 (12). С. 11-13.
- 9. Абдурахмонов О.Э., Вертаева Д.А., Юртов Е.В. Химический синтез нанопорошков Nd₂Fe₁₄B@SiO₂ типа ядро-оболочка // XV Всероссийской научно-технической конференции молодых ученых, специалистов и студентов вузов «Научно-практические проблемы в области химии и химических технологий». Труды Кольского Научного центра 2021 №2 (12). С. 14-17.
- 10. Алисултанов М.Э., Абдурахмонов О.Э., Юртов Е.В. Химический синтез магнитотвердых нанопорошков Nd₂Fe₁₄B // Сб. научн. трудов «Успехи в химии и химической технологии». 2021. Т. XXX V. № 9. С. 9-11.

- 11. Вертаева Д.А., Абдурахмонов О.Э., Мурадова А.Г., Юртов Е.В. Синтез модифицированных наночастиц Nd₂Fe₁₄B@SiO₂ // Сб. научн. трудов «Успехи в химии и химической технологии». 2021. Т. XXX V. № 9. С. 14-16.
- 12. Алисултанов М.Э., Абдурахмонов О.Э. Метод химического синтеза наноструктурированных постоянных магнитов $Nd_2Fe_{14}B$ // Сборник тезисов XII ежегодной конференции Нанотехнологического общества России. Москва, 2021. С. 52.
- 13. Алисултанов М.Э., Вертаева Д.А., Абдурахмонов О.Э. Мурадова А. Г. Разработка химического метода синтеза наноструктурированного сплава Nd₂Fe₁₄B // XXIII Международная научно-практическая конференция студентов и молодых ученых «Химия и химическая технология в XXI веке». Томск, 2022. С. 345-346.