Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико-технологический университет имени Д.И. Менделеева»

На правах рукописи

Абдурахмонов Одилжон Эшмухаммад угли

Химический метод получения наноструктурированного сплава Nd-Fe-B

2.6.6. Нанотехнологии и наноматериалы

АВТОРЕФЕРАТ диссертации на соискание ученной степени кандидата технических наук

Москва – 2022

Работа выполнена в федеральном государственном бюджетном образовательном учреждении высшего образования «Российский химико-технологический университет имени Д.И. Менделеева»

Научные руководители:

	доцент, к.х.н.,				
	Мурадова Айтан Галандар кызы				
	ФГБОУ ВО «Российский химико-технологический				
	университет имени Д.И. Менделеева», доцент кафедры				
	наноматериалов и нанотехнологии				
	члкорр. РАН, профессор, д.х.н.,				
	Юртов Евгений Васильевич				
	ФГБОУ ВО «Российский химико-технологический				
	университет имени Д.И. Менделеева», профессор				
	кафедры наноматериалов и нанотехнологии				
Официальные оппоненты:					
доцент, д.х.н.,	ФГБУН «Института геохимии и аналитической химии				
Шкинев	им. Д.И. Вернадского РАН», ведущий научный				
Валерий Михайлович	сотрудник лаборатории концентрирования				
профессор, д.т.н.,	ФГБОУ ВО «Российский химико-технологический				
Трошкина	университет имени Д.И. Менделеева», профессор				
Ирина Дмитриевна	кафедры технологии редких элементов и				
	наноматериалов на их основе				
старший научный	ФГБУН «Институт общей и неорганической химии им.				
сотрудник, к.х.н.,	Н.С. Курнакова РАН», старший научный сотрудник				
Симоненко	лаборатории химии лёгких элементов и кластеров				
Николай Петрович					

Защита диссертации состоится «30» августа 2022 г., в 10⁰⁰ часов на заседании диссертационного совета РХТУ.2.6.03 при Федеральном государственном бюджетном образовательном учреждении высшего образования «Российский химикотехнологический университет имени Д.И. Менделеева» (125047, г. Москва, Миусская пл., д. 9) в конференц-зале.

С диссертацией можно ознакомиться в Информационно-библиотечном центре и на официальном сайте РХТУ им. Д.И. Менделеева и на сайте университета http://diss.muctr.ru

Автореферат разослан «___» ____ 2022 г.

Ученый секретарь диссертационного совета РХТУ.2.6.03, доцент, к.х.н.

tray

Мурадова А.Г.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность и степень разработанности темы.

На сегодняшний день постоянные магниты Nd-Fe-B стали незаменимыми компонентами во многих высокотехнологичных продуктах, включая жесткие диски большой емкости, аппараты магнитно-резонансной томографии, ветряные генераторы и двигатели для электрических и гибридных транспортных средств. Магнитные поля, создаваемые редкоземельными магнитами сопоставимы с магнитными полями электромагнитов, при этом редкоземельные магниты не требуют затрат энергии и отличаются компактностью.

Магнитные характеристики постоянного магнита Nd-Fe-B зависят от методов их получения. Наноструктурирование сплава Nd-Fe-B позволяет получать магнитные материалы на их основе с высокими магнитными характеристиками.

Следует отметить, что для получения наноструктурированного сплава Nd-Fe-B требуется разработка новых методов получения. Известно, что основными методами получения наноструктурированных сплавов Nd-Fe-B являются физические, такие как: дуговая плавка, прядение из расплава, механическое измельчение. Однако физические методы имеют ряд недостатков, таких как: высокая энергозатратность, длительность процесса производства, сложность контроля гранулометрического состава. В отличие от физических, химические методы позволяют получать материалы с контролируемым гранулометрическим составом.

Известные на сегодняшний день химические методы получения наноструктурированного сплава Nd-Fe-B включают три основных этапа: синтез полупродуктов, восстановление полупродуктов до Nd-Fe-B, получение готового продукта. Следует отметить, что представленные в литературе работы по получению полупродуктов требуют использования органических соединений, что приводит к образованию зольного остатка в ходе термической обработки.

Поэтому актуальной задачей является разработка нового подхода к синтезу наноструктурированного сплава Nd-Fe-B без использования органических соединений на стадии получения полупродуктов.

Цель и основные задачи исследования.

Разработка химического метода получения наноструктурированного сплава Nd-Fe-B.

Поставленная цель определила необходимость решения следующих задач:

- получение наночастиц Nd₂O₃, Fe₂O₃ и Fe₃BO₆ методом контролируемого осаждения из растворов. Установление влияния основных параметров на размер и форму получаемых наночастиц;

- получение наноструктурированных сплавов Nd-Fe-B из наночастиц Nd₂O₃, Fe₂O₃ и Fe₃BO₆ с помощью восстановительно-диффузионного процесса;

- исследование физико-химических характеристик порошков наночастиц и наноструктурированных сплавов Nd-Fe-B различного стехиометрического состава;

- получение и исследование нанокомпозита на основе наноструктурированного сплава Nd-Fe-B и ненасыщенной полиэфирной смолы.

Научная новизна работы.

1. Впервые для получения наноструктурированного сплава Nd-Fe-B были использованы порошки наночастиц Nd₂O₃, Fe₂O₃ и Fe₃BO₆, полученные методом осаждения без применения органических соединений. Разработанный метод позволяет получать наноструктурированный сплав Nd-Fe-B, не содержащий соединений углерода.

2. Предложен возможный механизм образования магнитотвердой фазы $Nd_2Fe_{14}B$ из порошков наночастиц Nd_2O_3 , Fe_2O_3 и Fe_3BO_6 , в двухстадийном восстановительнодиффузионном процессе. На первой стадии образуются наночастицы $NdFeO_3$, $NdBO_3$, α - Fe_2O_3 , на второй стадии образуются частицы, состоящие из фаз $Nd_2Fe_{14}B$, α -Fe и CaO. 3. Получен нанокомпозит на основе наноструктурированного сплава Nd-Fe-B, обладающий высокими магнитными характеристиками, которые сопоставимы с характеристиками наноструктурированного сплава Nd-Fe-B легированного Dy и Co.

Теоретическая и практическая значимость.

1. Разработанный химический метод получения наноструктурированного сплава Nd-Fe-B, имеет практические рекомендации для создания высокоэффективных постоянных магнитов Nd-Fe-B.

2. Показана перспективность использования композиции, состоящей из 98 мас.% наноструктурированного сплава $Nd_{16}Fe_{76}B_8$ и 2 мас.% ненасыщенной полиэфирной смолы. Полученный нанокомпозит характеризуется магнитотвердыми свойствами при комнатных температурах ($H_c=7,7$ кЭ и $M_r=70$ А·м² /кг) и может быть использован в областях, предъявляющих высокие требования к магнитным характеристикам материала.

3. Результаты испытаний нанокомпозитов Nd-Fe-B с гальваническим и полимерным покрытиями в солевом тумане показали высокую коррозионную стойкость, соответствующую международному стандарту ISO 9227:2017(E).

Положения, выносимые на защиту.

1. Результаты исследования этапов синтеза наноструктурированного сплава Nd-Fe-B.

2. Результаты исследования механизма восстановительно-диффузионного процесса образования магнитотвердой фазы Nd₂Fe₁₄B.

3. Результаты исследования магнитных свойств сплава Nd-Fe-B в зависимости от стехиометрического состава исходных веществ.

Методология и методы исследования.

Методологическая основа диссертации представлена анализом современной научной литературы по изучаемой проблеме и общепринятыми методами проведения лабораторных исследований (экспериментов).

В работе использованы следующие основные методы исследования: просвечивающая электронная микроскопия (ПЭМ), сканирующая электронная микроскопия (СЭМ), электронно-зондовый микроанализ (ЭЗМ), рентгенофазовый и $(P\Phi A/PCA),$ мессбауэровская рентгеноструктурный анализ спектроскопия, инфракрасная спектроскопия (ИК-спектроскопия), магнитометрия, дифференциальносканирующая калориметрия и термогравиметрия (ДСК и ТГА), метод динамического светорассеяния (ДСР).

Степень достоверности и апробация результатов.

Достоверность обеспечена использованием комплекса взаимодополняющих современных апробированных методов исследования СЭМ, ПЭМ, ДСК/ТГА, ЭЗМ. мессбауэровская ИК-спектроскопия, спектроскопия, магнитометрия, воспроизводимостью результатов экспериментов. Интерпретация методов исследования основана на современных представлениях о химических методах получения HCC Nd-Fe-B. Полученные результаты согласуются с результатами других авторов, изучающих физические и химические методы получения магнитных материалов на основе сплава Nd-Fe-B.

Основные результаты диссертационной работы докладывались и обсуждались на: Международных конгрессах молодых ученых по химии и химической технологии Москва «МКХТ-2019», «МКХТ-2020» и «МКХТ-2021»; ХІ и ХІІ Ежегодных конференциях Нанотехнологического общества России (Москва, 2020 и 2021); VII Всероссийской конференции по наноматериалам «НАНО 2020» (Москва, 2020); XV Всероссийской научно-технической конференции «Научно-практические проблемы в области химии и химических технологий» (Апатиты, 2021), XXIII Международная научно-практическая конференция студентов и молодых ученых «Химия и химическая технология в XXI веке» (Томск, 2022).

Публикации.

По материалам исследований, обобщенных автором в диссертации, опубликовано 13 научных работ, в том числе 3 статьи, индексируемые в международных базах данных WoS, Scopus и представленные в научных журналах из списка ВАК РФ, 10 в сборниках научных трудов и докладов на всероссийских и международных конференциях.

Личный вклад автора.

На всех этапах работы автор принимал непосредственное участие в разработке и планировании исследования, выполнении экспериментов, анализе и интерпретации результатов, формулировании выводов. Подготовка материалов для публикации проводилась совместно с научным руководителем.

Структура и объем диссертации.

Диссертационная работа изложена на 158 страницах, включая 15 таблиц и 69 рисунков. Библиографический список насчитывает 189 наименований. Диссертация состоит из введения, литературного обзора, методической и экспериментальной части, выводов, списка цитируемой литературы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, сформулирована ее цель и основные задачи, описана научная новизна и практическая значимость работы. Охарактеризованы основные положения, выносимые на защиту, личный вклад автора, апробация результатов и публикации по представленной работе. Описана структура и объем диссертации.

В первой главе проведен обзор научной литературы, в котором рассмотрены свойства магнитных материалов, различные методы получения полупродуктов и наноструктурированных сплавов (НСС) Nd-Fe-B, потребности рынка в магнитных материалах. Особое внимание уделено химическим методам получения НСС и механизму образования магнитотвердой фазы Nd₂Fe₁₄B. Изложены сведения о направлениях работ и достигнутых результатах магнитных характеристик полученного НСС Nd-Fe-B.

Во второй главе описаны методики синтеза наночастиц Nd₂O₃, Fe₂O₃, Fe₃BO₆, Nd-Fe-B@SiO₂, HCC Nd-Fe-B и нанокомпозитов (HK) на их основе. Перечислены методы исследования и испытания полученных материалов.

В третьей главе представлены результаты исследования физико-химических характеристик полученных наночастиц Nd₂O₃, Fe₂O₃ и Fe₃BO₆, Nd-Fe-B@SiO₂. Также представлены исследования физико-химических характеристик HCC и HK Nd-Fe-B. Установлено влияние состава и температуры на магнитные свойства HCC и HK Nd-Fe-B.

1. Получение и исследование свойств наночастиц Nd₂O₃, Fe₂O₃ и Fe₃BO₆ 1.1 Наночастицы Nd₂O₃.

Наночастицы Nd₂O₃ были получены методом осаждения Nd(OH)₃ с последующим термическим отжигом. Результаты ДСР исследования влияния концентрации NaOH на размер получаемых наночастиц Nd(OH)₃ приведены в таблице 1. Показано, что увеличение концентрации NaOH приводит к уменьшению размера наночастиц Nd(OH)₃.

С целью исследования влияния температуры отжига на кристаллизацию полученных наночастиц Nd(OH)₃ проводили ДСК/ТГ анализ. По данным ДСК, определили несколько экзотермических эффектов при температурах 330, 635 и 795°С. По данным ТГ анализа, общая потеря массы составила 24,5 % (рисунок 1). Таблица 1 - Влияние концентрации NaOH на средний размер наночастиц Nd(OH)₂

Концентрации NaOH, M	Средний размер частиц Nd(OH) _{3,} по данным ДСР,	
	HM	
0,02	-	
0,03	1085 ± 78	
0,04	250±59	
0,05	150±42	
0,06	120±35	
0,08	80±22	
0,10	60±12	
0,12	30±6	

Для подробного исследования изменений, происходящих в кристаллической структуре, был проведен отжиг полученных наночастиц при температурах 330, 635 и 795°C соответственно. Качественный состав Nd₂O₃ подтверждён методом РФА (рисунок 2).

Рисунок 1 - Кривые ДСК/ТГ анализа для полученного Nd(OH)₃

На рисунке 2 приведены дифрактограммы соответствующих соединений. Результаты РФА полученного порошка при температуре 100°С показали образование одной кристаллической фазы Nd(OH)₃ гексагональной структурой (рисунок 2a).

Ha дифрактограмме полученного порошка при температуре 330°С расположение пиков соответствует гексагональной структуре Nd(OH)₃, но при этом наблюдается уменьшение степени кристалличности В образце(рисунок 2б).

С помощью ПЭМ было проведено исследование морфологии синтезированных наночастиц. Полученные при температуре 330°С

Увеличение температуры до 635°С приводит к образованию двух фаз NdOOH и Nd₂O₃, но при этом наблюдается доля аморфной фазы в образце (рисунок 2в).

Дальнейшее увеличение температуры до 795°С способствует полному переходу NdOOH в Nd₂O₃ (рисунок 2г).

Рисунок 3 - ПЭМ изображение и распределение по размерам наностержней (по длине) полученных при температурах: а, б - 330°С, в, г - 635°С, д, е - 795°С

частицы имели форму наностержней с диаметром 4 нм и длиной 29 нм соответственно (рисунок 3а, б). При повышении температуры до 635°С наблюдалось увеличение диаметра и длины наностержней до 9 и 53 нм соответсвенно (рисунок 3в, г). При последующем повышении температуры до 795°С диаметр составлял 28 нм, а длина – 118 нм (рисунок 3д, е).

1.2 Наночастицы Fe₂O₃. Наночастицы Fe₂O₃ были получены методом осаждения FeOOH с последующим термическим отжигом.

Для исследования влияния температуры отжига на кристаллизацию FeOOH проводили ДСК/ТГ анализ.

6

Термический анализ полученного нанопорошка FeOOH проводили от комнатной температуры ЛО 600°C (рисунок 4). По данным ТГА, общая потеря массы составила 9,6 %. По данным ДСК, был выявлен один эндотермический пик при температуре 94°C И два экзотермических пика при температурах 360 и 540°С.

Качественный состав Fe_2O_3 подтверждён методом РФА (рисунок 5). Для этого проводили отжиг синтезированных наночастиц FeOOH при температурах 360 и 540°C. На дифрактограмме нанопорошков, полученных при температуре 360°C, было зафиксировано два пика, соответствующих фазе α -Fe₂O₃ (рисунок 5а). Было установлено, что дифрактограмма нанопорошков, полученных при температуре 540°C (рисунок

Рисунок 5 - Дифрактограммы нанопорошков α-Fe₂O₃: а - полученных при температуре 360°С, б - 540°С, стандартная дифрактограмма α-Fe₂O₃ - JCPDS № 96- 210-1168

Рисунок 6 - ПЭМ изображение наночастиц α-Fe₂O₃ полученных при температуре 540°C

56), согласуется с литературными данными характерными для гематита. Полученная фаза α-Fe₂O₃ имеет тригональную структуру. Других соединений и модификаций железа в полученном образце не наблюдалось.

На рисунке 6 представлено ПЭМ-изображение НЧ, полученных при температуре отжига 540°С. Установлено, что форма частиц близка к сферической, средний размер наночастиц составляет 55±11 нм.

1.3 Наночастицы Fe₃BO₆

Наночастицы Fe₃BO₆ были получены взаимодействием FeCl₃ и NaBH₄. Предположительная схема реакции представлена ниже:

 $3FeCl_3+9NaBH_4+30H_2O \rightarrow Fe_3BO_6\downarrow+8B(OH)_3+36H_2\uparrow+9NaCl$

В работе проведено исследование влияния концентрации NaBH₄ на размер наночастиц Fe₃BO₆. Было установлено, что полученные наночастицы Fe₃BO₆ при

концентрации 0,01 M NaBH₄ имеют сферическую форму, средний размер, по данным ДСР, составляет 56±13 нм. Наночастицы Fe₃BO₆, полученные при концентрации 0,02 M NaBH₄, также имеют сферическую форму, а средний размер равен 39±7 нм. Для дальнейшего исследования использовали наночастицы полученные при концентрации 0,02 M NaBH₄.

Влияние температуры отжига на кристаллизацию НЧ Fe₃BO₆ исследовали с помощью методов ДСК/ТГ. Термический анализ полученного соединения проводили от комнатной температуры до 600°С, общая потеря массы составила 2,42%. На кривой ДСК были зафиксированы три пика, один эндотермический пик при 79 °С и два экзотермических пика при температурах 300, 530°С (рисунок 7).

Рисунок 7 - Кривые ДСК и ТГ анализа образца Fe₃BO₆

Качественный состав Fe₃BO₆ подтверждён методом РФА (рисунок 8). Для этого проводили отжиг полученного Fe₃BO₆ при температурах 300 и 530°C. На дифрактограмме нанопорошков после сушки был зафиксирован один отчетливый пик, он совпадает с Fe₃BO₆ (рисунок 8а). Доля аморфной фазы данного образца 95%. составила Ha дифрактограмме полученных нанопорошков при температуре 300°С зафиксированы два Доля относящихся Fe₃BO₆. пика к аморфной фазы данного образца составляет 86%.

Дифрактограмма нанопорошков полученных при температуре 530°С представлена на рисунке 8в. По данным РФА нанопорошок состоит из 74.4 мас % д

Рисунок 8 - Дифрактограммы нанопорошков Fe₃BO₆ полученных при температурах: а - 100°C, б - 300°C и в - 530°C

Рисунок 9 - ПЭМ изображение наночастиц Fe₃BO₆·α-Fe₂O₃ полученных при температуре 530°C

РФА, нанопорошок состоит из 74,4 мас.% α-Fe₂O₃ и 25,6 мас.% Fe₃BO₆.

На рисунке 9 представлено ПЭМ-изображение НЧ, полученных при температуре 530°С. Установлено, что форма частиц близка к сферической, средний размер наночастиц составляет 50±10 нм.

2. Получение и исследование свойств наноструктурированного сплава Nd-Fe-B

2.1 Получение наноструктурированного сплава Nd-Fe-В восстановительно-диффузионным процессом

Получение НСС Nd-Fe-В проводили в три этапа.

На первом этапе были получены НЧ Nd₂O₃, Fe₂O₃ и Fe₃BO₆.

Для определения количественного состава нанопорошки исследовали методом масс-спектрометрии с индуктивносвязанной плазмой (ИСП-МС). Результаты исследования представлены в таблице 2.

По результатам ИСП-МС анализа нанопорошки Nd₂O₃: Fe₃BO₆: Fe₂O₃ брали в стехиометрическом соотношении 1:1:2,5 с целью получения фазы Nd₂Fe₁₄B.

На втором этапе проводили двухстадийный восстановительнодиффузионный процесс.

На первой стадии проводили термическую обработку смеси оксидов при температуре 900°С в потоке газообразной смеси 95%Аг + результатам 5%H₂. По PΦA наблюдалось образование фаз NdFeO₃, α -Fe₂O₃ (рисунок 10), NdBO₃ И полученных средний размер наночастиц составляет 95±15 HM (рисунок 11).

Реакции, происходящие на этой стадии можно представить следующим образом:

2Fe₃BO₆+H₂
$$\rightarrow$$
2Fe₃O₄+B₂O₃+H₂O (1)
 Δ H_{расчетная}=-108 кДж/моль
Nd₂O₃+3H₂ \rightarrow 2Nd+3H₂O (2)
 Δ H_{расчетная}=711кДж/моль
3Nd+3Fe₃O₄ \rightarrow 3NdFeO₃+3Fe₂O₃ (3)
 Δ H_{расчетная}=482 кДж/моль
2Nd+ B₂O₃ \rightarrow 2NdBO₃ (4)
 Δ H_{расчетная}=881 кДж/моль

Таблица 2 – Элементный состав полученных НЧ Nd₂O₃, Fe₂O₃ и Fe₃BO₆

Наночастицы	Fe,	Nd,	В,
	мас.%	мас.%	мас.%
Nd_2O_3	0,13	53,82	0,06
Fe ₂ O ₃	60,13	0,05	0,18
Fe ₃ BO ₆	73,46	0,04	4,08

Рисунок 10 - Дифрактограмма наночастиц смеси: NdFeO₃, NdBO₃ и α-Fe₂O₃ и данные JCPDS

Рисунок 11 - СЭМ изображение наночастиц смеси NdFeO₃, NdBO₃ и α-Fe₂O₃

На второй стадии восстановительно-диффузионного процесса для образования фазы Nd₂Fe₁₄B был использован гидрид кальция (CaH₂).

Для исследования механизма реакции восстановительно-диффузионного процесса проводили термический анализ. Для этого готовили образец, состоящий из смеси H4 NdFeO₃, NdBO₃, α - Fe₂O₃ и CaH₂. Далее проводили измерение от комнатной температуры до 900°C в атмосфере азота со скоростью нагрева 10°C/мин. На кривой ДСК зафиксированы четыре экзотермических пика при температурах 350, 435, 690 и 800°C соответственно (рисунок 12а). По данным ТГ анализа, общая потеря массы составила 13,19% (рисунок 12б).

Рисунок 12 - Результаты анализа нанопорошков смеси NdFeO₃, NdBO₃, α- Fe₂O₃ и CaH₂, а - ДСК и б - ТГ

Для подробного исследования механизма образования HCC Nd-Fe-В проводили восстановительно-

диффузионный процесс при 350, температурах 435, 690 и 800°С в аргона среде В течение 2 Ч. Качественный состав полученных образцов был определен методом РФА (рисунок 13). По результатам PΦA. восстановленный при температуре 350°C образец состоит из смеси 46 мас.% CaO. 32.4 мас.% NdFeO₃, 12,1 мас.% α-Fe₂O₃, 3,9 мас.% NdBO₃ и 5,6 мас.% α-Fe (рисунок

13a).

Рисунок 13 - Дифрактограмма HЧ, NdFeO₃, NdBO₃ и α- Fe₂O₃ с восстановителем – CaH₂, отожженного при температурах: a - 350°C, б - 435°C, в - 690°C и г - 800°C в атмосфере Ar в течение 2 ч. Обозначения ▲- NdFeO₃, ● - Fe₂O₃, ■ - NdBO₃, ◆ - CaO, ★ - Fe, ▼ - NdH₂, ≪ - Nd₂O₃, ズ - B, ★ - Nd₂Fe₁₄B

Регистрация пиков α -Fe свидетельствует о восстановлении Fe₂O₃ (уравнение 5). Образец, восстановленный при температуре 435°C, состоит из 48,1 мас.% CaO, 32,4 мас.% NdFeO₃, 10,1 мас.% α -Fe₂O₃, 2,9 мас.% NdBO₃, 6,2 мас.% α -Fe и 0,3 мас.% NdH₂ (рисунок 136). Снижение содержания Fe₂O₃ указывает на дальнейшее восстановление до α -Fe. Образование новой фазы NdH₂ свидетельствует о начале восстановления фазы NdBO₃ (уравнение 6).

Дифрактограмма восстановленного образца при температуре 690°С указывает на то, что образец состоит из 54,4 мас.% CaO, 1,4% NdFeO₃, 31,3 мас.% α -Fe и 5,3 мас.% NdH₂ 5,6 мас.% Nd₂O₃ и 2 мас.% В (рисунок 13в). Снижение содержания NdFeO₃ указывает на дальнейшее восстановление до α -Fe и NdH₂ (уравнение 7). Шум спектра возрос из-за образования аморфного бора (уравнение 6). Также, на дифрактограмме был зафиксирован пик Nd₂O₃. Это связано с окислением некоторого количества NdH₂.

По данным дифрактограммы, образец восстановленный при температуре 800° С (рисунок 13г) состоит из 52,4 мас.% СаО, 10,9 мас.% α -Fe и 36,7 мас.% Nd₂Fe₁₄B (уравнение 8).

На основании данных РФА предложен следующий механизм образования фазы Nd₂Fe₁₄B:

при температуре 350°С:

2Fe₂O₃+3CaH₂ $\xrightarrow{\Delta}$ 4Fe+3CaO+3H₂O (5) при температуре 435°C: (5)

- NdBO₃+2CaH₂ $\xrightarrow{\Delta}$ NdH₂+B+2CaO+H₂O (6) при температуре 690°С:
- NdFeO₃+2CaH₂ $\xrightarrow{\Delta}$ NdH₂+Fe+2CaO+H₂O (7) при температуре 800°C:

$$2NdH_2+14Fe+B \xrightarrow{\rightharpoonup} Nd_2Fe_{14}B+H_2 \quad (8)$$

Входе восстановительнодиффузионного процесса помимо основного продукта HCC Nd-Fe-В образуется побочный продукт – CaO.

На третьем этапе провели удаление СаО. Для удаления СаО использовали раствор NH4Cl в C₂H₅OH. Качественный состав HCC Nd-Fe-В после промывки был определен методом РФА (рисунок 14). Было установлено, что HCC Nd-Fe-В состоит из 76,1 мас.% Nd₂Fe₁₄B и 23,9 мас.% Fe.

При исследовании наночастиц с помощью ПЭМ (рисунок 15) было установлено, что НСС Nd-Fe-B состоит из

Рисунок 14 - Дифрактограмма промытого HCC Nd-Fe-B: + - Nd₂Fe₁₄B, ★- Fe

Рисунок 15 - ПЭМ изображение НСС Nd-Fe-B

частиц неправильной формы со средним размером 110±35 нм.

2.2 Исследование зависимости магнитных свойств от состава HCC Nd-Fe-B

Для изучения зависимости магнитных характеристик HCC Nd-Fe-B от содержания фаз: Nd₂Fe₁₄B, α -Fe и Nd – изменяли стереохимическое соотношение HU Nd₂O₃, Fe₂O₃ и Fe₃BO₆.

Коэрцитивная сила зависит от содержания фазы $Nd_2Fe_{14}B$. Для улучшения коэрцитивной силы магнитов путем уменьшения магнитомягкой фазы α -Fe были получены порошки HCC со следующим стехиометрическим соотношением: $Nd_{12}Fe_{84}B_6$, $Nd_{14}Fe_{80}B_6$, $Nd_{16}Fe_{76}B_8$ и $Nd_{16}Fe_{72}B_8$. Петли гистерезиса и магнитные характеристики HCC со стехиометрическими составами: $Nd_{12}Fe_{84}B_6$, $Nd_{14}Fe_{80}B_6$, $Nd_{14}Fe_{80}B_6$, $Nd_{16}Fe_{72}B_8$. Петли гистерезиса и магнитные характеристики HCC со стехиометрическими составами: $Nd_{12}Fe_{84}B_6$, $Nd_{14}Fe_{80}B_6$, $Nd_{16}Fe_{72}B_8$ – представлены на рисунке 16 и в таблице 3.

Порошок HCC Nd₁₂Fe₈₄B₆ после процесса промывки, по данным PФA, состоит из смеси магнитотвердой фазы 76,1 мас.% Nd₂Fe₁₄B и магнитомягкой фазы 23,9% α -Fe (рисунок 14). Результаты РФА порошка HCC Nd₁₄Fe₈₀B₆ показали наличие двух фаз с содержанием: 91,1% Nd₂Fe₁₄B и 8,9% α -Fe. По дифрактограмме образец HCC Nd₁₆Fe₇₆B₈ состоит из одной фазы Nd₂Fe₁₄B. По данным дифрактограммы, порошка HCC Nd₁₆Fe₇₂B₈, было установлено наличие двух фаз с содержанием: 90,2% Nd₂Fe₁₄B и 9,8% NdH₂.

Рисунок 16 - Петля магнитного гистерезиса для HCC Nd-Fe-B, стехиометрического состава: а - $Nd_{12}Fe_{84}B_{6}$, б - $Nd_{14}Fe_{80}B_{6}$, в - $Nd_{16}Fe_{76}B_8$, и г - $Nd_{16}Fe_{72}B_8$

Было установлено, что при увеличении содержания Nd и B (в HCC Nd₁₄Fe₈₀B₆ и Nd₁₆Fe₇₆B₈) наблюдается увеличение содержания магнитотвердой фазы Nd₂Fe₁₄B. Коэрцитивная сила НСС Nd₁₆Fe₇₆B₈ увеличивалась, достигая максимального значения Н_с=8439 Э, компенсируя уменьшение значений удельной намагниченности насыщения до M_s=109.00 А·м²/кг И остаточной $M_r = 78.01$ $A \cdot M^2 / \kappa \Gamma$ намагниченности (рисунок 16). Уменьшение

Таблица 3 - Магнитные характеристики различных стехиометрических составов HCC Nd-Fe-B

Состав	Hc,	Ms,	Mr,
	Э	А·м²/кг	$A \cdot M^2/\kappa\Gamma$
Nd ₁₂ Fe ₈₄ B ₆	3295	132,01	99,53
$Nd_{14}Fe_{80}B_6$	4890	121,22	89,99
Nd ₁₆ Fe ₇₆ B ₈	8439	109,00	78,01
Nd ₁₆ Fe ₇₂ B ₈	8355	73,02	51,01

намагниченности связано с уменьшением содержания фазы α-Fe. По данным РФА, HCC Nd₁₆Fe₇₆B₈ состоит из фазы Nd₂Fe₁₄B, при этом фазы α-Fe не наблюдалось.

Было установлено, что, контролируя содержание Nd и B, можно получить сплавы Nd-Fe-B с высокими магнитными характеристиками (таблица 3). Для дальнейших исследований был выбран образец состава Nd₁₆Fe₇₆B₈.

Кристаллическая структура HCC Nd16Fe76B была дополнительно изучена c помощью РФА с последующей обработкой данных с помощью программ FullProff и Vesta. Было установлено, что ячейка Nd₂Fe₁₄B состоит ИЗ четырех слоев, 68 состоящих ИЗ атомов с тетрагональной структурой определено $P4_2/mnm$. Было расположение атомов Nd, Fe и B в кристаллической решетке И расстояние между ними.

100.0 ° 99.5 результат 16 k₁ **Прохождение**, 16 k₂ 8 j₁ 99.0 8 j₂ 4 e 4 c 98.5 5 10 -10 -5 ò v(mm/s)

Рисунок 17 - Мессбауэровский спектр образца НСС Nd₁₆Fe₇₆B₈

Было проведено

исследования структуры НСС Nd₁₆Fe₇₆B с помощью мессбауэровской спектроскопии, в режиме постоянного ускорения. Было установлено, что атомы Fe в Nd₂Fe₁₄B расположены в шести типах структурно неэквивалентных позиций: k_1 , k_2 , j_1 , j_2 , e и c(рисунок 17). Два типа позиций занимают атомы Nd – f и g, и один тип позиций g – атомы бора. Мессбауэровский спектр Nd₂Fe₁₄B при ⁵⁷Fe может быть описан в модели шести секстетов, соответствующих шести возможным состояниям атомов Fe. Позиций k_1 , k_2 , j_1 , j_2 , e и c составляют соответственно 16, 16, 8, 8, 4 и 4 (всего 56 атомов железа), вклад соответствующих подспектров в общий спектр составляет 4:4:2:2:1:1.

3. Получение и исследование свойств композита на основе Nd-Fe-B

Температура,

К

20

100

160

200

260

280

300

320

340

360

380

400

Для получения компактного постоянного магнита порошок НСС Nd₁₆Fe₇₆B₈ перемешивали с ненасыщенной полиэфирной смолой (НПЭС) и прессовали в магнитным поле. Далее полученный композит подвергали термическому отжигу для отвержения НПЭС.

Исследование рабочей влияния 280 400 K) температуры (от ло на намагниченность и коэрцитивную силу магнитов Nd-Fe-В представлено на рисунке 18. Следует отметить, что с увеличением температуры уменьшались все магнитные характеристики (таблица 4).

M_s,

 $\mathbf{A} \cdot \mathbf{M}^2 / \mathbf{K} \Gamma$

109,60

113,66

113,15

112,80

110,53

109,38

109,25

107,98

106,52

104.69

102,36

99,42

M_r,

 $A \cdot M^2 / \kappa \Gamma$

71,56

75,46

76.91

76,40

72,75

71,05

69,69

67,82

65,61

63.16

60,53

57,30

Таблица 4 -	Магнитные характери	стики НК
Nd-Fe-В в	интервале температур 2	20- 400 К

Hc,

Э

13518

13996

12991

11459

9161

8426

7772

7166

6607

6065

5554

5043

тистерезиса НК Nd-Fe-B, полученные в поле 3Тл при температурах 20-260 К

Магнитные характеристики НК

Nd-Fe-B были измерены и при низких температурах. Петли гистерезиса HK Nd-Fe-B при низких температурах представлены на рисунке 19. В таблице 4 представлены магнитные характеристики HK Nd-Fe-B при температурах 20-400 К.

Для повышения коррозионной стойкости на НК Nd-Fe-B были нанесены покрытия, Цб (цинк), Цбхр (цинк-хроматирование), Н9М10 (никель-медь), Н9О-Виб (никель - олово-висмут), Н9М10Н9 (никель-медь-никель), полимерное (НПЭС). Покрытые НК Nd-Fe-B подвергали испытанию на коррозионную стойкость в камере соляного тумана в течение 0, 48, 168, 336 и 744 ч. После испытания в течение 744 ч образцы, покрытые Ц6, Н9О-Ви6, Н9М10Н9 и НПЭС, успешно прошли испытание на коррозию.

ЗАКЛЮЧЕНИЕ

1. Разработан химический метод получения наноструктурированного сплава Nd-Fe-B из порошков наночастиц Nd₂O₃, Fe₂O₃ и Fe₃BO₆.

2. Установлено влияние температуры на образование наночастиц Nd_2O_3 , Fe_2O_3 и Fe_3BO_6 . При температуре более 795°C происходит кристаллизация наночастиц Nd_2O_3 , при этом образуются частицы со стержнеобразной формой с диаметром 28 и длиной 118 нм. При температуре более 540°C происходит полная кристаллизация наночастиц α -Fe₂O₃, полученные частицы имеют эллипсоидальную форму со средним диаметром 55 нм. Кристаллизация НЧ состава 74,4 мас. % α -Fe₂O₃ и 25,6 мас. % Fe₃BO₆ происходит при температуре более 530°C, полученные частицы имеют неправильную форму, средний диаметр частиц составляет 50 нм.

3. Предложен механизм образования наноструктурированного сплава Nd-Fe-B из наночастиц Nd₂O₃, Fe₂O₃ и Fe₃BO₆. Установлено, что на первой стадии восстановительно-диффузионного процесса образуются нанопорошки NdFeO₃, NdBO₃, α -Fe₂O₃. На второй стадии восстановительно-диффузионного процесса образуются нанопорошки, состоящие из фаз 36,7 мас.% Nd₂Fe₁₄B, 10,9 мас.% α -Fe и 52,4 мас.% CaO. Полученный после удаления CaO, наноструктурированный сплав Nd-Fe-B состоит из магнитотвердой фазы Nd₂Fe₁₄B 76,1 мас.% и магнитомягкой фазы α -Fe 23,9 мас.%.

4. Установлено, что с увеличением содержания Nd и B наблюдается повышение доли магнитотвердой фазы Nd₂Fe₁₄B в наноструктурированном сплаве Nd-Fe-B. При этом коэрцитивная сила увеличивалась от 3,3 до 8,4 кЭ, удельная намагниченность насыщения уменьшалась до $M_s=109,00 \text{ A}\cdot\text{m}^2/\text{kr}$ и остаточная намагниченность – до $M_r=78,01 \text{ A}\cdot\text{m}^2/\text{kr}$. Выявлено, что уменьшение намагниченности связано с уменьшением содержания фазы α-Fe.

5. Получен нанокомпозит на основе ненасыщенной полиэфирной смолы и наноструктурированного сплава Nd₁₆Fe₇₆B₈. Показано, что с увеличением температуры от 300 до 400 К изменялись магнитные характеристики: коэрцитивная сила от 7,7 до 5 кЭ и удельная остаточная намагниченность от 70 до 57 А·м² /кг.

6. Получены нанокомпозиты Nd-Fe-B с гальваническим и полимерным покрытиями. По результатам испытаний в солевом тумане образцы покрытые Ц6, H9O-Bu6, H9M10H9 и полимерными покрытиями успешно прошли испытание на коррозионную стойкость согласно международному стандарту ISO 9227:2017(E).

7. Разработаны коррозионностойкие магнитные композиты на основе ненасыщенной полиэфирной смолы и наноструктурированного сплава $Nd_{16}Fe_{76}B_8$ (H_c=7,7 кЭ, M_s=109,25 A·м²/кг, M_r=69,69 A·м²/кг). Показана перспективность использования композита в качестве материала постоянного магнита.

Рекомендации и перспективы дальнейшей разработки темы

Разработанный химический метод позволяет получать постоянные магниты на основе HCC Nd-Fe-B. Полученные результаты экспериментальных исследований служат важным ориентиром для работ по химическому методу получения HCC Nd-Fe-B. В будущем предстоит работа по получению легированного HCC Nd-Fe-B.

СПИСОК РАБОТ, ОПУБЛИКОВАННЫХ АВТОРОМ

- 1. Abdurakhmonov O.E., Yurtov E.V., Savchenko E.S., Savchenko A.G. Chemical synthesis and research nanopowder of magnetic hard alloy Nd₁₅Fe₇₈B₇ // Journal of Physics Conference Series. 2020. T. 1688. № 1. P. 012001-1-012001-6. DOI: 10.1088/1742-6596/1688/1/012001. (*Web of Science, Scopus*)
- 2. Abdurakhmonov O.E., Alisultanov M.E., Vertaeva D.A., Muradova A.G. The Effect of Annealing Temperature on Crystallization of Nd₂O₃ Nanoparticles Synthesized by the Deposition Method // Russian Journal of Inorganic Chemistry. 2022. Vol. 67, № 7, P. 1032–1038. DOI: 10.1134/S0036023622070026. (*Web of Science, Scopus*)
- 3. Абдурахмонов О.Э., Алисултанов М.Э., Вертаева Д.А., Шарапаев А.И., Мурадова А.Г. Химический метод синтеза нанопорошков Nd₂Fe₁₄B // Химическая промышленность сегодня. 2022. Т. 1. С. 14-25. DOI: 10.53884/27132854_2022_1_14. (*Chemical Abstracts*)

В сборниках научных трудов в тезисах докладов на международных и всероссийских конференциях

- 4. Абдурахмонов О.Э., Юртов Е.В., Савченко А.Г., Еремеева Ж.В. Химический синтез твердых магнитных наночастиц Nd₂Fe₁₄B // Сб. научн. трудов «Успехи в химии и химической технологии». 2019. Т. ХХХШ. № 10. С. 5-7.
- Абдурахмонов О.Э., Юртов Е.В., Савченко А.Г., Савченко Е.С. Химический синтез и исследование нанопорошков магнитотвёрдого сплава Nd₁₅Fe₇₈B₇ // Сб. тез. докл. VII Всероссийская конференция по наноматериалам «НАНО 2020» Москва, 2020. С. 197-198.
- Алисултанов М.Э., Абдурахмонов О.Э., Юртов Е.В., Савченко Е.С., Савченко А.Г. Механохимический синтез и исследование магнитных нанопорошков Nd₂Fe₁₄B // Сб. научн. трудов «Успехи в химии и химической технологии». 2020. Т. XXX IV. № 10. С. 60-63.
- Абдурахмонов О.Э., Юртов Е.В., Савченко А.Г., Савченко Е.С. Механохимический синтез нанокомпозиционных магнитных материалов Nd₂Fe₁₄B // Сборник тезисов XI ежегодной конференции Нанотехнологического общества России. Москва, 2020. С. 69-70.
- 8. Абдурахмонов О.Э., Алисултанов М.Э., Юртов Е.В. Химический синтез наноструктурированного магнитотвердого сплава системы Nd-Fe-B // Научно-практические проблемы в области химии и химических технологий». Труды Кольского Научного центра 2021 №2 (12). С. 11-13.
- Абдурахмонов О.Э., Вертаева Д.А., Юртов Е.В. Химический синтез нанопорошков Nd₂Fe₁₄B@SiO₂ типа ядро-оболочка // XV Всероссийской научно-технической конференции молодых ученых, специалистов и студентов вузов «Научнопрактические проблемы в области химии и химических технологий». Труды Кольского Научного центра 2021 №2 (12). С. 14-17.
- 10. Алисултанов М.Э., Абдурахмонов О.Э., Юртов Е.В. Химический синтез магнитотвердых нанопорошков Nd₂Fe₁₄B // Сб. научн. трудов «Успехи в химии и химической технологии». 2021. Т. XXX V. № 9. С. 9-11.

- 11. Вертаева Д.А., Абдурахмонов О.Э., Мурадова А.Г., Юртов Е.В. Синтез модифицированных наночастиц Nd₂Fe₁₄B@SiO₂ // Сб. научн. трудов «Успехи в химии и химической технологии». 2021. Т. XXX V. № 9. С. 14-16.
- 12. Алисултанов М.Э., Абдурахмонов О.Э. Метод химического синтеза наноструктурированных постоянных магнитов Nd₂Fe₁₄B // Сборник тезисов XII ежегодной конференции Нанотехнологического общества России. Москва, 2021. С. 52.
- 13. Алисултанов М.Э., Вертаева Д.А., Абдурахмонов О.Э. Мурадова А. Г. Разработка химического метода синтеза наноструктурированного сплава Nd₂Fe₁₄B // XXIII Международная научно-практическая конференция студентов и молодых ученых «Химия и химическая технология в XXI веке». Томск, 2022. С. 345-346.