Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский химико–технологический университет имени Д. И. Менделеева»

> Международная межправительственная организация Объединенный институт ядерных исследований

> > На правах рукописи

БАЙМУХАНОВА АЯГОЗ ЕЛТАЕВНА

Подбор пар радионуклидов III – IV валентных элементов для создания генераторов нового типа

2.6.8 Технология редких, рассеянных и радиоактивных элементов

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата химических наук

Научный руководитель:

кандидат химических наук

Магомедбеков Эльдар Парпачевич

Научный консультант:

кандидат химических наук

Философов Дмитрий Владимирович

Москва - 2024

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
ГЛАВА 1. ЛИТЕРАТУРНЫЙ ОБЗОР	10
1.1 Радионуклиды в ядерной медицине	10
1.2 Мишенная радионуклидная терапия и диагностика	11
1.3 Трехвалентные металлы Me(III) в тераностике	17
1.4 Комплексообразование ионов металлов с карбоновыми кислотами и	1 ИХ
сорбция на ионообменниках	19
1.4.1 Механизм сорбции катионов на ионообменниках при высоких	
концентрациях кислот	26
1.5 Радионуклидные генераторы	29
1.6 Методы получения радионуклидов на ускорителях	36
1.7 Выводы к литературному обзору	44
ГЛАВА 2. МЕТОДИЧЕСКАЯ ЧАСТЬ	46
2.1 Обоснование выбора пар радионуклидов для создания радионуклид	ных
генераторов	46
2.2 Химические реактивы и радиоактивные метки	54
2.3 Методика определения коэффициентов распределения элементов с	
радиоактивной меткой	56
2.4 Методы определения радиоактивности и концентрации вещества	59
ГЛАВА З. ПОЛУЧЕНИЕ ПОЗИТРОН–ИЗЛУЧАЮЩЕГО	
РАДИОНУКЛИДА ⁸⁶ Ү	61
3.1 Коэффициенты распределения	61
3.2 Облучение мишеней природного иттрия	63
3.3 Выделение ⁸⁶ Zr	69
3.4 Радионуклидный генератор ⁸⁶ Zr→ ⁸⁶ Y	71
3.5 Выводы к главе 3	74
ГЛАВА 4. ПОЛУЧЕНИЕ ПОЗИТРОН–ИЗЛУЧАЮЩЕГО	
РАДИОНУКЛИДА ⁶⁸ Ga	76

4.1 Коэффициенты распределения	76
4.2 Получение радиоизотопов германия из облученных протонами ми	пеней
природного галлия	77
4.3 Выбор химической схемы радионуклидного генератора ⁶⁸ Ge→ ⁶⁸ Ga	80
4.4 Радионуклидный генератор 68 Ge $\rightarrow {}^{68}$ Ga	82
4.5 Выводы к главе 4	85
ГЛАВА 5. ПОЛУЧЕНИЕ β – ИЗЛУЧАЮЩЕГО РАДИОНУКЛИДА 90 разволяется в составляется в	Y86
5.1 Коэффициенты распределения	86
5.2 Радионуклидный генератор 90 Sr \rightarrow V с реверсной схемой элюиров	ания с
двумя растворами	89
5.3 Выводы к главе 5	91
ГЛАВА 6. ПОЛУЧЕНИЕ ИЗОТОПОВ АС(III) И RA(II) ИЗ ОБЛУЧЕН	НОГО
ТОРИЯ	92
6.1 Коэффициенты распределения	92
6.2 Облучение мишеней природного тория	97
6.3 Схема выделения изотопов Ac(III) и Ra(II)	98
6.4 Выводы к главе 6	104
ЗАКЛЮЧЕНИЕ	106
СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ	109
СПИСОК ЛИТЕРАТУРЫ	110
ПРИЛОЖЕНИЕ	126

введение

Актуальность работы. В ядерной медицине радионуклиды в зависимости от своих ядерно-физических свойств применяются для молекулярной визуализации и терапии онкологических, кардиологических заболеваний и др. [1–3].

В настоящее время эффективно и широко используются трехвалентные радионуклиды порядка 30 элементов в мишенной радионуклидной терапии и диагностике, и прежде всего в тераностике (⁴⁷Sc/⁴⁴Sc [4], ⁹⁰Y/⁸⁶Y [5,6], ¹⁷⁷Lu/⁶⁸Ga [7], $^{225}Ac/^{68}Ga$ др.). Большой выбор ядерно-физических [8–10] И свойств моновалентных радионуклидов позволяет проводить И разрабатывать эффективные методы диагностики и терапии. Эти факторы выразились в разработке широкой мультиплицированной линейки радиофармпрепаратов (РФП) на основе трехвалентных элементов (Me(III)-DOTA-TOC/TATE/NOC, Me(III)-*PSMA*, Me(III)-*DOTA-FAPI*, Me(III)-*DOTA-5G* и др). Новые эффективные любого подходящего методики получения практически трехвалентного радионуклида сразу же находят отклик в качестве доступного РФП на его основе. С одной стороны, это расширяет набор существующих методик синтеза и применения РФП, с другой стороны позволяет их оптимизировать.

Следует подчеркнуть, что радионуклидные генераторы являются весьма эффективным способом получения медицинских радионуклидов в виду доступности и высокой удельной активности получаемых радиопрепаратов.

Степень разработанности темы. Выбор радионуклидов в данном исследовании обусловлен их активным использованием в концепции тераностики в качестве диагностических и терапевтических компонентов (⁶⁸Ga, ⁸⁶Y, ⁹⁰Y, ²²⁵Ac), а также необходимостью развития методов их получения.

Существует ряд коммерческих генераторов ${}^{68}\text{Ge} \rightarrow {}^{68}\text{Ga}$, однако остаются проблемы с непостоянством и достаточно большой величиной проскока, а также с масштабированием по активности и утилизацией. В случае генератора ${}^{90}\text{Sr} \rightarrow {}^{90}\text{Y}$ одной из главных проблем является загрязнение, как и радиохимических

помещений, так и препаратов следами стронция. Оптимизация подразумевает разработку эффективных генераторных схем, удобных в эксплуатации и подходящих для автоматизации, обеспечивающих минимальное количество опасных стадий (выпаривание, другие межфазовые превращения, близкий контакт с радиопрепаратом). Несмотря на дешевизну персонала материнского радионуклида, в последнее время интерес к дочернему ⁹⁰Y снижается. Помимо жесткости бета-излучения последнего это обусловлено высокими требованиями к безопасной эффективной работе генератора 90 Sr \rightarrow 90 Y. Применение современных подходов в терапии и диагностике возможно раскроют потенциал ⁹⁰Y. Тем более если учитывать его использование в паре с диагностическим ⁸⁶Y. Следует подчеркнуть физическую возможность осуществление генератора ⁸⁶Zr→⁸⁶Y, который до сих пор не был разработан.

Разработка методик получения ²²⁵Ас как из генераторов, так и ускорительным способом является «горячей» актуальной тематикой, о чем свидетельствует большое количество публикаций, выходящих в последние годы.

Разработка и эксплуатация радионуклидных генераторов (${}^{68}\text{Ge} \rightarrow {}^{68}\text{Ga}$, ${}^{86}\text{Zr} \rightarrow {}^{86}\text{Y}$, ${}^{90}\text{Sr} \rightarrow {}^{90}\text{Y}$, ${}^{229}\text{Th} \rightarrow {}^{225}\text{Ra} \rightarrow {}^{225}\text{Ac}$) как источника медицинских радионуклидов, а также выделение целевых радионуклидов из облученных мишеней требует изучения сорбционного поведения пар II – III, III – IV валентных элементов в подходящих химических системах.

Целью настоящей работы является разработка методик получения медицински значимых III валентных радионуклидов из генераторов и из облученных мишеней на примере ⁶⁸Ga, ⁸⁶Y, ⁹⁰Y и ²²⁵Ac.

Основываясь на цели исследования, поставлены следующие задачи:

1. Осуществить подбор пар генетически связанных радионуклидов, подходящих для применения в ядерной медицине;

2. Определить коэффициенты распределения Th(IV), Ge(IV), Zr(IV), Y(III), Ac(III), Sr(II) и Ra(II) в растворах карбоновых кислот на ионообменных и экстракционных смолах;

5

3. Разработать схемы радионуклидных генераторов ${}^{68}\text{Ge} \rightarrow {}^{68}\text{Ga}, {}^{86}\text{Zr} \rightarrow {}^{86}\text{Y},$ ${}^{90}\text{Sr} \rightarrow {}^{90}\text{Y};$

4. Разработать методики получения и выделения материнских радионуклидов для генераторов Ge(IV) и Zr(IV) из облученных мишеней;

5. Разработать методику получения и выделения ²²⁵Ас из облученных ториевых мишеней.

Научная новизна.

1. Предложен радионуклидный генератор 86 Zr \rightarrow 86 Y. Разработана методика получения 86 Zr по реакции Y(p, 4n) с протонами в диапазоне энергий 70–45 МэВ.

2. Предложена схема радионуклидного генератора ⁶⁸Ge→⁶⁸Ga, основанная на анионообменной хроматографии в оксалатно–хлористоводородной среде с различными модами элюирования: прямой и реверсной.

3. Разработана химическая схема выделения изотопов Ge(IV) из мишеней галлия, облученных протонами на основе экстракции из жидкой мишени с последующей реэкстракцией в DGA Resin в среде трихлоруксусной кислоты.

4. Предложена реверсная схема радионуклидного генератора 90 Sr \rightarrow 90 Y, основанная на катионообменной хроматографии в среде уксусной кислоты – ацетата аммония.

5. Разработана методика растворения тория в комплексообразующей трихлоруксусной кислоте в целях хроматографического выделения Ac(III) и Ra(II) на катионите. Разработана методика выделения изотопов Ac(III) и Ra(II) – продуктов реакции глубокого расщепления – из облученных протонами мишеней тория с возможностью масштабирования.

6. Впервые определены коэффициенты распределения Ge(IV), Zr(IV) и Y(III) на катионите Dowex 50×8 и анионите Dowex 1×8 в смесях этандиовой и хлористоводородной кислот; Zr(IV) и Y(III) на экстракционной смоле UTEVA Resin в растворах этандиовой кислоты; Th(IV), Ac(III) и Ra(II), а также Ac(III) и Ra(II) с макроколичеством тория на катионите Dowex 50×8 в среде трихлоруксусной кислоты; Sr(II) и Y(III) на катионите Dowex 50×8 и анионите

6

Dowex 1×8 в растворах уксусной кислоты и смеси уксусной кислоты и ацетата аммония.

Теоретическая и практическая значимость работы.

1. Разработанные радионуклидные генераторы ${}^{68}\text{Ge} \rightarrow {}^{68}\text{Ga}, {}^{86}\text{Zr} \rightarrow {}^{86}\text{Y} \text{ и } {}^{90}\text{Sr} \rightarrow {}^{90}\text{Y}$ дают возможность получения медицинских радионуклидов ${}^{68}\text{Ga}, {}^{86}\text{Y} \text{ и } {}^{90}\text{Y}.$

2. Разработанная методика выделения ²²⁵Ас из макроколичеств тория позволяет увеличить его наработку за счет использования массивных мишеней тория, а также попутно извлечь радиоизотопы радия.

3. Результаты проведенной оценки сорбционного поведения II, III и IV валентных элементов на ионообменных и экстракционных смолах в среде карбоновых кислот возможно использовать при разделении элементов в соответствующих отраслях, а также для оценки их химических свойств.

Методология И методы исследования. Методологическая основа диссертации представлена анализом современной научной литературы по изучаемой проблеме и общепринятыми методами проведения исследований. В работе использованы следующие основные методы исследования: гаммаспектрометрия, выполненная помощью аналитического оборудования с Объединённого института ядерных исследований; бета-спектрометрия с помощью оборудования кафедры Химии высоких энергий и радиоэкологии РХТУ им. Менделеева и масс-спектрометрия с индуктивно связанной плазмой с помощью аналитического оборудования Института проблем технологии микроэлектроники и особочистых материалов РАН.

Положения, выносимые на защиту:

1. Сорбционные характеристики Th(IV), Ge(IV), Zr(IV), Ac(III), Y(III), Ra(II) и Sr(II) на ионообменных и экстракционных смолах в растворах ряда карбоновых кислот.

2. Методики получения позитрон-излучающих радионуклидов ⁸⁶Y и ⁶⁸Ga посредством радионуклидных генераторов ⁸⁶Zr \rightarrow ⁸⁶Y, ⁶⁸Ge \rightarrow ⁶⁸Ga, а также материнских радионуклидов ⁸⁶Zr и ⁶⁸Ge из облученных мишеней.

3. Методика получения радионуклида ⁹⁰Y посредством радионуклидного генератора 90 Sr \rightarrow ⁹⁰Y с реверсным типом элюирования.

4. Методика получения терапевтического радионуклида ²²⁵Ac из ториевых мишеней, облученных протонами средних энергий.

Степень достоверности и апробация результатов. Основные результаты и положения диссертационной работы были представлены в виде докладов на следующих конференциях: Х Российская конференция с международным участием «Радиохимия–2022» (Санкт–Петербург, Россия, 2022); IX Российская конференция с международным участием «Радиохимия–2018» (Санкт–Петербург, Россия, 2018); 18th Radiochemical conference (Marianske Lasne, Czech Republic, 2018); The third International Symposium on Technetium and other Radiometals in Chemistry and Medicine (Bressanone, Italy, 2018); International conference on chemistry and material science, 2017 (Rome, Italy); International scientific forum «Nuclear Science and Technologies» (Almaty, Kazakhstan, 2017); 10th International Symposium on Targeted Alpha Therapy (Kanazawa, Japan, 2017); The XX International Scientific Conference of Young Scientists and Specialists (AYSS–2016) (Dubna, Russia, 2016).

Публикации. По материалам диссертации опубликовано 14 научных работ [11–24], в том числе в журналах, входящих в базы данных научного цитирования WoS/Scopus – 3, в других изданиях, включая сборники тезисов докладов международных научных конференций – 11.

Обоснованность научных положений и выводов, и достоверность полученных данных. Степень достоверности представленных данных определяется публикацией результатов в рецензируемых журналах. Также результаты работ докладывались на международных конференциях и на научных семинарах ЛЯП ОИЯИ. Результаты обсуждались и докладывались, как и на семинарах НЭОЯСиРХ ЛЯП по ядерной спектроскопии и радиохимии, структуре атомного ядра, неускорительной физике нейтрино и астрофизике, так и на общелабораторном семинаре ЛЯП ОИЯИ.

Личный вклад автора. Автор принимал участие в поиске и анализе литературы по теме исследования; в планировании программы экспериментов, постановке и проведении экспериментов; в разработке и реализации методик радионуклидов мишеней: В определении коэффициентов выделения ИЗ распределения элементов в исследуемых средах; в разработке, тестировании и определении качественных параметров радионуклидных генераторов; В обсуждении полученных результатов; в подготовке публикаций материалов в научных изданиях и докладах на конференциях.

Планирование программы и облучения мишеней проводилось совместно с сотрудниками Отдела Фазотрона ЛЯП ОИЯИ. Исследование образцов на содержание стабильных изотопов, а также определение коэффициентов разделения выполнены совместно с сотрудниками АСИЦ ИПТМ РАН (г. Черноголовка).

Структура и объём работы. Диссертационная работа состоит из введения, обзора научной литературы, шести глав, выводов, заключения и списка литературы. Общий объем диссертационная работы составляет 126 страниц, включая 44 рисунка и 16 таблиц. Список цитируемой литературы включает 161 библиографическую ссылку.

Автор выражает благодарность сотрудникам Фазотрона ЛЯП ОИЯИ за организацию и проведение облучений мишеней, сотрудникам АСИЦ ИПТМ РАН за проведение измерений на МС–ИСП, Хушвактову Ж.Х. за теоретический расчет выходов ядерных реакций.

ГЛАВА 1 ЛИТЕРАТУРНЫЙ ОБЗОР

1.1 Радионуклиды в ядерной медицине

В ядерной медицине радионуклиды могут использоваться в свободном виде, в неорганических или органических соединениях, либо в комплексе. Вещество, в составе которого имеются радионуклид в комплексе с хелатором, линкер и биологический вектор называется радиофармпрепаратом (РФП) (Рисунок 1). Биологический вектор обеспечивает адресную доставку РФП к месту опухоли или к ее окружению, что реализует концепцию мишенной радионуклидной терапии и диагностики. Моноклональные антитела, биомолекулы, пептиды, наноносители и низкомолекулярные ингибиторы используются в качестве биологических векторов. Период полувыведения и размер биологического вектора должны соотноситься с периодом полураспада радионуклида.

Рисунок 1 – Современный радиофармпрепарат, состоящий из радионуклида, хелатора, линкера и биологического вектора

Радионуклиды в медицине впервые были использованы в 1950–х годах для диагностики, а затем лечения заболеваний щитовидной железы с использованием ¹³¹I ($T_{1/2}$ =8.03 д). На сегодняшний день наиболее распространенным радионуклидом, используемым в диагностике, является ^{99m}Tc ($T_{1/2}$ =6.01 ч), при этом ежегодно проводится около 40 миллионов процедур, что составляет около

85% диагностических сканирований во всем мире. Такое широкое использование ^{99m}Tc обуславливается его уникальными ядерно-физическими свойствами: период полураспада 6.01 ч, γ – кванты с энергией 140 кэВ с высоким выходом, подходящими для процедур в однофотонной эмиссионной компьютерной томографии (ОФЭКТ), и отсутствие нежелательного излучения.

Для целей позитронно–эмиссионной томографии (ПЭТ) используются более короткоживущие радионуклиды, такие как ¹¹С ($T_{1/2}=20.36$ мин), ¹³N ($T_{1/2}=9.97$ мин) [25], ¹⁵O ($T_{1/2}=2.04$ мин) [26,27], ¹⁸F ($T_{1/2}=109.77$ мин) [28], ⁸²Rb ($T_{1/2}=1.26$ мин) [25], в составе органической молекулы. Одним из самых распространённых органических молекул является аналог глюкозы, меченный ¹⁸F (Φ mopdeзоксиглюкоза–¹⁸F).

С развитием радиофармацевтики вместо простых неорганических и органических молекул все большее применения находят более сложные нацеленные молекулы. Такие системы доставки радионуклидов на основе хелатора *DOTA* (1,4,7,10–тетраазациклододекан–1,4,7,10–тетрауксусная кислота) и мишенных биологических векторов, например *DOTA*–*TOC/NOC/TATE* (для нейроэндокринных опухолей) или *PSMA* (для рака простаты) широко применяются с металлами III группы.

1.2 Мишенная радионуклидная терапия и диагностика

Применение РФП с биологическим вектором, селективным к определенным видам раковых клеток, привело к развитию подхода мишенной радионуклидной терапии и диагностики. В отличие от таких традиционных подходов как лучевая терапия или хирургическое вмешательство в данном подходе препарат вводится парентерально и локализуется в определенной области на основе физиологических или биохимических явлений. РФП подбирается таким образом, чтобы иметь сродство к рецепторам, ферментам или антигенам.

В зависимости от размера опухоли в мишенной радионуклидной терапии используются радионуклиды с различными видами излучения: α–, β– частицы или оже электроны. Для макрокластеров клеток эффективно используются β – частицы, которые имеют пробег 0.05 – 12 мм и низкую линейную передачу энергии (ЛПЭ) 0.2 кэВ/мкм. β - излучатели ¹⁷⁷Lu ($T_{1/2}=6.64$ д) и ⁹⁰Y ($T_{1/2}=64.05$ ч) очень популярные в радионуклидной терапии [29-36]. Для опухолей на начальных стадиях или небольших метастаз эффективней использовать частицы с большей ЛПЭ и меньшим пробегом, чем β-частицы. ЛПЭ α – частицы 50-230 кэВ/мкм и оже электроны 4-26 кэВ/мкм, благодаря высоким значениям ЛПЭ они производят плотную ионизацию вдоль трека. Частицы с разными ЛПЭ производят различные биологические эффекты в организме. Для оценки повреждений, вызванных разными излучениями, был введен параметр, частицами называемый с эффективность (ОБЭ). относительная биологическая Он определяется соотношением поглощенных доз тестового излучения к эталонному излучению:

$$0\overline{b}\overline{\partial} = \frac{D_{\mathrm{T}}}{D_{\overline{\partial}}} \tag{1}$$

где *D*-поглощенная доза.

В таблице 1 показаны ОБЭ α – излучающих радионуклидов, которая была получена эмпирическим путем. Физическим смысл полученных данных означает, что при одной и тоже дозе производимый радиобиологический эффект α – излучающих радионуклидов в несколько раз выше, чем у рентгеновского, γ – излучения, а также β – излучателей. Излучение с высокой ЛПЭ создает более сложные клеточные эффекты при этом способность клеток восстанавливать повреждения низкая. Также это связано с тем, что дочерние клетки от клеток, облученных α – частицами менее радиорезистентны, чем у облученных излучением с низкими ЛПЭ. Таблица 1 – Относительная биологическая эффективность ОБЭ α – излучающих радионуклидов

Радионуклид	Эталонная радиоактивность	ОБЭ	Ссылка
²¹² Pb ²¹² Bi ²¹⁰ Po	x–rays	4.7 6 6.7	[37]
¹⁴⁸ Gd ²²³ Ra	x–rays	7.4 5.4	[38]
²¹³ Bi	⁹⁰ Y	2–3	[39]
²¹¹ At	⁶⁰ Co	3.4	[40]
²¹¹ At	⁶⁰ Co	4.8	[41]
²¹¹ At	^{99m} Tc ⁶⁰ Co	3.4 5	[42]
²¹³ Bi	¹³⁷ Cs	3.4	[43]

Экспериментально эффективность поглощенной дозы вычисляется из числа выживших клеток. Для излучений с низким ЛПЭ кривая выживаемости клеток небольшой имеет пик, который соответствует восстановлению после повреждения. Такая радиационного кривая описывается квадратичным уравнением:

$$SF = e^{-\alpha D - \beta D^2} \tag{2}$$

SF – выжившая фракция (survival fraction), α и β – параметры чувствительности на единицу дозы.

Для а- частиц кривая выживаемости описывается лог-линейным уравнением:

$$SF = e^{-D/D_0} \tag{3}$$

где D₀ –поглощенная доза необходимая для выживания 37% клеток.

Линейность функции означает ограниченную способность клеток к восстановлению после облучения. На Рисунке 2 показана кривая выживаемости клеток как функция от поглощенной дозы.

Рисунок 2 – Кривые выживаемости клеток в зависимости поглощенной дозы для излучения с низкой и высокой линейными передачами энергии. RBE – относительная биологическая эффективность [44]

Учитывая эффективность использования α -излучающих радионуклидов, они набирают все большую популярность в радионуклидной терапии. Есть ряд α излучателей, которые считаются перспективными в мишенной радионуклидной терапии (Таблица 2). Среди них выделяется ²²⁵Ас своими удачными ядернофизическими характеристиками и химическими свойствами, а также клинические исследования с ²²⁵Ас показывают его терапевтическую эффективность. Но использование ²²⁵Ас ограничивается проблемами в его получении (описано в 1.6.5).

Радио- нуклид	T _{1/2}	Средняя энергия на распад <i>Е</i> _α , МэВ	Средняя энергия на распад <i>Е_{X+γ}</i> , МэВ	Средняя энергия на распад $E_{\beta+ce+Auger},$ MэB	Получение
¹⁴⁹ Tb	4.118 ч	0.66	1.59	0.18	Ускоритель
²¹¹ At	7.214 ч	6.73	0.04	6.09·10 ⁻³	Ускоритель
²¹² Pb	10.64 ч	7.79	1.54	0.86	Генератор
²¹² Bi	60.55 мин	7.79	1.39	0.68	Генератор
²¹³ Bi	45.59 мин	8.31	0.17	0.58	Генератор
²²³ Ra	11.43 д	26.83	0.23	1.03	Генератор
²²⁵ Ac	9.9203 д	27.64	0.23	0.61	Ускоритель, генератор
²²⁷ Th	18.697 д	32.78	0.34	1.08	Генератор

Таблица 2 – Ряд α-излучателей, перспективных в мишенной радионуклидной терапии

Наблюдение за ходом терапии, посттерапевтическая визуализация для контроля успеха терапии, а также претерапевтическая диагностика в целях расчета индивидуальной дозы для пациента могут быть проведены с теми же биологическими векторами, но с другими подходящими радионуклидами. Такой подход с использованием радионуклидов с различными видами излучения с одинаковыми нацеливающими векторами именуется тераностикой. В концепции тераностика можно использовать радионуклиды одного и того же элемента (¹³¹L/^{124,122}I, ⁶⁷Cu/⁶²Cu, ⁴⁷Sc/⁴⁴Sc) или элементы аналоги (²²⁵Ac, ¹⁷⁷Lu, ⁹⁰Y / ¹¹¹In, ⁶⁸Ga, ⁴⁴Sc). Например, для целей ПЭТ перспективными считаются позитрон–излучающие радионуклиды ⁶⁸Ga (T_{1/2}=67.71 мин) и ⁸⁶Y (T_{1/2}=14.74 ч). В таблице 3 показаны пары трехвалентных радионуклидов для тераностики.

Терапевтический компонент		Ди	агностичес	кий компо	нент		
DЦ	Т	Получе	Приме	РН	т	Получе	Приме
ГП	I 1/2	ние	нение		1 1/2	ние	нение
		I	Изотопные	заместит	ели		
¹⁶¹ Tb	6.89 д	R	ΜβΤ	¹⁵² Tb	175 ч	Δ	ПЭТ
¹⁴⁹ Tb	4.12 ч	А	ΜαΤ	10	17.5 1	71	1131
				¹²⁴ I	4.18 д	А	ПЭТ
131 I	8.03 д	R	ΜβΤ	122 T	3.63	G	ПЭТ
				1	МИН	0	1101
⁹⁰ Y	64.06 ч	G	ΜβΤ	⁸⁶ Y	14.74 ч	G, A	ПЭТ
⁶⁷ Cu	61.83 ч	А	ΜβΤ	⁶⁴ Cu	12.70 ч		ПЭТ
⁴⁷ Sc	3.35 д	А	ΜβΤ	⁴⁴ Sc	3.97 ч	G	ПЭТ
			Элемент	ы аналоги	1		
⁹⁰ Y	64.06 ч	G	ΜβΤ	¹¹¹ In	2.8 д	А	ОФЭКТ
¹⁷⁷ Lu	6 64 л	R	МВТ	⁶⁸ Ga	67.71	G	ПЭТ
124	0.01д	ix i	14101			0	1101
²²⁵ Ac	992 л	G A	ΜαΤ	⁶⁷ Ga	3.26 д	А	ОФЭКТ
	у.у2 д	\mathbf{O}, \mathbf{M}	101001	⁴⁴ Sc	3.97 ч	G	ПЭТ

Таблица 3 – Пары трехвалентных радионуклидов для тераностики

Мα(β)Т – мишенная альфа (бета) – терапия

G – генератор;

А – ускоритель;

R – реактор.

1.3 Трехвалентные металлы Ме(III) в тераностике

В рамках тераностической концепции часто применяется пара ¹⁷⁷Lu/68Ga с различными молекулами, например DOTA-5G для рака поджелудочной железы, *PSMA* для рака простаты, *DOTA–FAPI* для различных видов рака [45–47]. В случае радиорезистентности клеток и неэффективности β-терапии переход на терапию с радионуклидами эффективный α-излучающими показывает отклик значительным уменьшением опухоли и метастаз. Например, эффективность ²²⁵Ас-PSMA доказана у пациента с раком простаты с лимфатическими и костными метастазами после 4 циклов использования ¹⁷⁷Lu-PSMA [8,9]. В другом радионуклидная терапия функциональной исследовании первичная нейроэндокринной опухоли поджелудочной железы с метастазами в печени проводилась с радионуклидами ¹⁷⁷Lu и ⁹⁰Y [10]. После неэффективности данного метода терапии, перешли на терапию с ²²⁵Ас-*DOTATOC*. В данных случаях в ⁶⁸Ga c качестве инструмента молекулярной визуализации использовали соответствующими молекулами PSMA и DOTATOC.

Иттрий имеет два изотопа, которые применяются в медицине. В основном диагностический компонент ⁸⁶Y применяется для планирования терапии и для оценки биораспределения РФП с ⁹⁰Y [5,33,48–50]. Сравнение *DOTATOC* с ⁸⁶Y–ПЭТ и ¹¹¹In–ОФЭКТ показало, что использование ⁸⁶Y–*DOTATOC* более подходящее для планирования терапии нейроэндокринных опухолей [36]. Основываясь на описанном исследовании с ⁸⁶Y–*DOTATOC*, терапевтический ⁹⁰Y–*DOTATOC* был одобрен и введен в клиническое применение [51].

Из всех элементов периодической таблицы элементы с основной степенью окисления +3 составляют большее количество. Как видно из гистограммы (Рисунок 3), таких элементов 37, в их числе редкоземельные металлы, актиний и тяжелые актиноиды, индий, галлий, скандий и др., которые играют важную роль в ядерной медицине. Благодаря схожим химическим свойствам и взаимозаменяемости, их применение в ядерной медицине весьма перспективно.

Рисунок 3 – Распределение элементов в зависимости от их основной степени окисления

Ш валентные элементы имеют ряд преимуществ: они менее подвержены гидролизу, чем IV валентные и создают более стабильные комплексы с бифункциональными хелаторами, чем II валентные. Бифункциональные хелаторы имеют свойство не только создавать устойчивые комплексы с радионуклидами, но и имеют функциональную группу, которая связывается с биологическим вектором. Циклический хелатор *DOTA* считается универсальным хелатором для большинства металлов (Рисунок 4). Важно заметить, что процесс хелатирования *DOTA* с Me³⁺ и условия образования комплексов отработан. Комплексы *DOTA* – Me³⁺ отличаются высокой термодинамической и кинетической стабильностями. Например, константа стабильности $log K_{DOTA}$ для Y = 24.3 [52], Ga = 26.05 [53], In = 23.9 и La = 21.7 [54].

Хотя поиск и модификация лигандов, подходящих для определенных радионуклидов, не прекращаются. В частности, для ⁶⁸Ga были разработаны новые

хелаторы и их бифункциональные производные, такие как макроциклические – *NOTA, NODAGA и TRAP* [55,56]; немакроциклические – *THP* [57]; гибридные – *AAZTA и DATAm* [58,59].

Рисунок 4 – Бифункциональный хелатор DOTA и его производные [60]

1.4 Комплексообразование ионов металлов с карбоновыми кислотами и их сорбция на ионообменниках

Карбоновые кислоты широко используются в качестве растворителей, при этом они являются неплохими комплексообразователями для металлов. В зависимости от количества функциональных групп разделяются на моно–, ди–, трикарбоновые кислоты. В данном разделе будет рассмотрено ряд комплексов карбоновых кислот (уксусной, трихлоруксусной и этандиовой) с двух–, трёх–, четырёх–зарядными катионами металлов. В основном карбоновые кислоты являются слабыми, например, константа диссоциации уксусной кислоты $1.75 \cdot 10^{-5}$. Кислотность возрастает если в молекуле появляется заместитель, который стабилизирует карбоксил–анион, например, константа диссоциации трихлоруксусной кислоты $2.2 \cdot 10^{-2}$. Также кислотность возрастает с количеством карбоксильных групп, в случае с этандиовой кислотой константы диссоциации K₁ и K₂ $5.6 \cdot 10^{-2}$ и $5.4 \cdot 10^{-5}$ соответственно. Следует отметить, что структура образующихся комплексных соединений в значительной степени зависит от строения кислоты, т.е. от длины углеводородных цепей, основности и взаимного расположения функциональных групп.

Растворы уксусной кислоты достаточно химически и биологически стабильны, также эту среду удобно использовать при очистке медицинских радионуклидов [61]. Уксусная кислота образует с двухвалентными катионами нейтральные ацетатные комплексы Me(II)Ac₂. Константы диссоциации *logK* нейтрального комплекса увеличиваются с уменьшением ионного радиуса двухзарядного катиона [62]:

Ba > Sr > Ca > Mg

logK 6.48 < 6.65 < 6.77 < 7.22

Щелочно–земельные (Mg(II), Ca(II), Sr(II), Ba(II)), а также редкоземельные (Sc(III), Y(III) и Ln(III)) элементы не сорбируются на анионообменной смоле [63], и имеют высокие К_д на катионите во всем диапазоне концентраций уксусной кислоты [64].

Ацетатные буферы в диапазоне pH 5–9 используются в качестве элюентов многозарядных катионов с ионообменных смол, их удобно использовать в синтезе радиофармпрепаратов. Практически для всех катионов металлов (II, III, IV, V) с увеличением концентрации аммония ацетата уменьшается K_{d} на катионите [65]. В Таблице 4 показаны K_{d} для ряда катионов в системе катионит– CH₃COONH₄. В растворе, вероятно, проходит реакция:

$$M^{n+} + mAc^{-} \leftrightarrow M(Ac)_{m}^{(n-m)+}$$
(4)

где комплекс будет положительный если n > m, нейтральным n = m и отрицательным n < m.

Таблица 4 – Коэффициенты распределения элементов на Dowex 50×8 в зависимости от концентрации ацетата аммония. Адаптировано из [65].

Ион	Коэффициенты распределения в среде ацетата аммония							я	
Иотолис		Концентрация NH4Ac, М							
металла	0.02	0.06	0.1	0.2	0.3	0.5	0.8	1.6	
Ag(I)	113	75	42	35	27	16	10	6	
Mg(II)	768	408	240	80	46	18	6	_	
Ca(II)	1098	678	327	151	86	34	15	2	
Sr(II)	848	692	324	185	119	55	24	9	
Ba(II)	815	759	427	321	193	117	58	21	
Mn(II)	840	508	285	98	47	17	5	<1	
Co(II)	2370	674	316	96	47	18	7	<1	
Ni(II)	3891	840	461	114	55	20	8	2	
Cu(II)	1767	329	90	34	17	6	3	<1	
Zn(II)	622	407	226	72	27	7	<1	_	
Cd(II)	945	403	169	50	20	5	<1	_	
Hg(II)	ppt	ppt	ppt	161	156	116	51	14	
Pb(II)	1212	417	154	39	15		<1	_	
Al(III)	-	5447	5447	2711	786	32	7	<1	
Cr(III)	411	289	83	16	12	9	8	7	
La(III)	-	>10000	>10000	723	204	31	7	4	
Ce(III)	4788	653	609	518	177	36	7	<1	
Ce(IV)	ppt	3	4	5	3	2	2	2	
UO ₂ (VI)	676	54	14	2	1	<1	<1	<1	

Вариация концентраций компонентов в смеси CH₃COOH и CH₃COONH₄ дает возможность разделения пар Me(II) – Me(III) в системе радионуклидных генераторов. Например, Sr(II) / Y(III) и Ba(II) / La(III).

Для разделения пар IV – III (II) валентных элементов возможно использовать более сильные карбоновые кислоты, чем уксусная кислота. Замещение атомов водорода в метильной группе на атомы хлора в молекуле карбоновой кислоты стабилизируют карбоксилат–ион и увеличивают способность его образования. В ряду хлоруксусных кислот склонность к комплексообразованию увеличивается в зависимости от количества замещённых атомов водорода ClCH₂COOH < Cl₂CCHOOH < CCl₃COOH. Комплексы моно–, ди– и трихлоруксусных кислот исследованы плохо, практически нет данных для комплексов двух– и трёхзарядных катионов. Можно предположить, что трихлоруксусная кислота более склонна образовывать комплексы с высокозарядными катионами. Были измерены константы диссоциации для комплексов хлоруксусных кислот с торием Th⁴⁺ [66] и получены следующие константы равновесия:

$$Th^{4+} + CH_2ClCOOH \leftrightarrow Th(CH_2ClCOO)^{3+} + H^+,$$
(5 a)

$$K_a = 1.33$$

$$Th^{4+} + CHCl_2COOH \leftrightarrow Th(CHCl_2COO)^{3+} + H^+$$
(5 6)

$$K_a = 5.74$$

$$Th^{4+} + 2CHCl_2COOH \leftrightarrow Th(CHCl_2COO)^{2+}_2 + 2H^+$$

$$K_a = 12.7$$

$$Th^{4+} + CCl_3COOH \leftrightarrow Th(CCl_3COO)^{3+}_2 + H^+$$
(5 B)

$$K_a = 8.23$$

$$Th^{4+} + 2CCl_3COOH \leftrightarrow Th(CCl_3COO)^{2+}_2 + 2H^+$$

$$K_a = 26.7$$

Me(IV) образуют большое количество комплексов с анионами и нейтральными молекулами. Устойчивость комплексных соединений зависит от

радиуса и заряда аниона. Довольно прочные комплексы образуются с анионами оксикислот, HSO_4^- , SO_4^{2-} , $C_2O_4^{2-}$.

Двухосновная карбоновая кислота, такая как этандиовая кислота может существовать в разных формах в зависимости от *pH*. На Рисунке 5 показан график распределения форм H_2L , HL^- , L^{2-} (константы диссоциации $K_1=5.6\cdot10^{-2}$, $K_2=5.4\cdot10^{-5}$).

Рисунок 5 – Процентное распределение форм этандиовой кислоты, как функции от концентрации ионов водорода; 1–*H*₂*L*, 2–*HL*⁻, 3–*L*^{2–}[67]

В сильно разбавленных растворах этандиовой кислоты превалируют комплексы $Me(C_2O_4)^{2+}$ и $Me(C_2O_4)_2$. Например, как в случае Hf⁴⁺ и Zr⁴⁺ образуют комплексы такого вида при концентрации в диапазоне $0.5 \cdot 10^{-5} - 1 \cdot 10^{-4}$ М. Константы равновесия $logK_1 = 5.2 \pm 0.1$, $logK_2 = 9.7 \pm 0.1$ для Hf⁴⁺ и $logK_1 = 5.5 \pm 0.4$, $logK_2 = 9.7 \pm 0.2$ для Zr⁴⁺ [68]. С увеличением концентрации оксалат–ионов преобладают комплексы $Me(C_2O_4)_4^{4-}$, $Me(C_2O_4)_3^{2-}$. Например, Zr⁴⁺ $logK_4 > 26$, $logK_3 = 4$; Th⁴⁺ $logK_4 = 23.6$ [69].

Константы равновесия для оксалатных комплексов с Ge(IV) изучены плохо. Известна $logK_3=3.5$ [70], также сообщается об образовании оксикомплексов

комплексов $[GeO(C_2O_4)_2]^{2-}$ и $[GeO_2(C_2O_4)]^{2-}$ в *pH* 3 до 6 без приведения констант равновесия [71].

Для Me(III) более характерны комплексы $Me(C_2O_4)^+$, $Me(C_2O_4)_2^-$, $Me(C_2O_4)_3^{3-}$. Например, константы равновесия для Lu³⁺ $logK_1=5.11\pm0.08$; $log\beta_2=9.18\pm0.12$; $log\beta_3=12.79\pm0.08$ [72].

В работе [73] проведено детальное изучение комплексов Ga(III) с оксалатными ионами в зависимости от кислотности. Было доказано присутствие в растворах гидроксооксалатных комплексов вида $Ga(C_2O_4)(OH)_i^{1-i}$, а также то, что образование триоксалатного комплекса галлия $Ga(C_2O_4)_3^{3-}$ ($log\beta_3=17.98\pm0.08$) не зависит от кислотности раствора.

Ме(III) и Me(IV) валентные элементы имеют высокую сорбцию на анионообменной смоле в разбавленных растворах этандиовой кислоты [74]. С повышением концентрации оксалат–ионов K_{a} для Me(III) плавно уменьшаются и в максимальной концентрации $C_{2}H_{2}O_{4}$ (0.9423 M) составляют ~ 50 для Sc(III) и Lu(III) [75] (Рисунок 6).

Рисунок 6 – К_Д для II и III валентных элементов в зависимости от концентрации

 $C_2H_2O_4$ [75]

24

При добавлении HCl оксалатные комплексы Me(III) частично разрушаются, также известно, что они слабо поглощаются анионообменником в присутствии HCl [76]. Это обеспечивает их элюирование с анионообменной смолы. На графике (Рисунок 7) показаны K_{π} Sc(III) в зависимости от концентрации HCl при фиксированных концентрациях $C_2H_2O_4$ (0.1 M, 0.025 M, 0.005 M) [77].

Из-за высокого заряда и малого ионного радиуса (высокая напряженность ионного поля) оксалатные комплексы с Me(IV) отличаются особой устойчивостью. Из-за этого Me(IV) могут сильнее удерживаться анионообменной смолой в оксалатной среде по сравнению с Me(III).

Рисунок 7 – К_Д Sc(III) в зависимости от концентрации HCl при фиксированных концентрациях C₂H₂O₄: 0.1 М – сплошная, 0.025 М – штриховая, 0.005 М – точечная линии. Адаптировано из [77]

В данной работе проведены исследования сорбции Me(III) и Me(IV) в системе ионообменная смола и смесь HCl/C₂H₂O₄ для разработки генераторов ${}^{68}\text{Ge} \rightarrow {}^{68}\text{Ga}$ и ${}^{86}\text{Zr} \rightarrow {}^{86}\text{Y}$.

1.4.1 Механизм сорбции катионов на ионообменниках при высоких концентрациях кислот

Сорбцию широкого круга элементов на катионите исследовали многие авторы [78]. Интересно отметить, что для некоторых кислот особенно для минеральных с концентрацией 4 M наблюдается выше тенденция вновь возрастания коэффициентов распределения Кд. К сожалению, механизм такой зависимости металлов в литературе не описан. Можно предположить следующий механизм: при повышении концентрации растворителя количество воды на катионообменнике по отношению к подвижной фазе возрастает, следовательно, жесткие катионы предпочтительно переходят в фазу катионообменника. Кроме того, данный эффект зависит от силы кислоты, то есть, чем выше константа диссоциации, тем более выраженное повышение К_Д. Если рассмотреть две кислоты разные по силе, например HCl ($K_1 = 10^7$) и HBr ($K_1 = 10^9$), видно, что возрастание K_{\perp} происходит круче при повышении концентрации кислоты с большей константой диссоциации (Рисунок 8).

Рисунок 8 – а) Влияние концентрации бромистоводородной кислоты на поглощение некоторых элементов [79]. Система: Dowex 50–HBr;
б) Влияние концентрации соляной кислоты на поглощение некоторых элементов [80]. Система: Dowex 50–HCI

Подобный эффект можно наблюдать не только в среде минеральных кислот, а также, как и в среде органических растворителей, так и в смешанных средах. Хотя как было отмечено выше, повышение К_Д будет менее выраженным (Рисунок 9).

В

Рисунок 9 – Коэффициенты распределения некоторых катионов.

Система AG 50W×8 – HCl – ацетон

Адаптировано из [81]

1.5 Радионуклидные генераторы

Радионуклидный генератор подразумевает разделение материнского и дочернего радионуклидов. Для успешного разделения необходимо, чтобы дочерний радионуклид отличался своими химическими свойствами от материнского. Преимуществами радионуклидного генератора является его использование вдали от ядерных установок; продолжительное время эксплуатации (в зависимости от периода полураспада материнского радионуклида); небольшая дозовая нагрузка на персонал (при условии автоматизации).

Когда период полураспада материнского радионуклида больше периода полураспада дочернего, время достижения максимальной активности дочернего радионуклида можно вычислить по формуле:

$$t = \frac{1}{\lambda_2 - \lambda_1} \ln \frac{\lambda_2}{\lambda_1},$$
(6)

где λ_1 и λ_2 – постоянная распада материнского и дочернего радионуклидов соответственно.

Для генератора ⁶⁸Ge \rightarrow ⁶⁸Ga оно равно 14 ч, но не является оптимальным, так как более 90% максимальной активности накапливается в первые 4 часа. На практике возможны разные моды элюирования, чаще всего раз в сутки, но в зависимости от потребностей можно и каждый час – два. На рисунке 10 показан теоретический расчет распада ⁶⁸Ge и накопление ⁶⁸Ga.

Рисунок 10 – Теоретический расчет распада ⁶⁸Ge и накопление ⁶⁸Ga

Большинство существующих генераторов работают в так называемой классической схеме (Рисунок 11), где используется хроматографическая колонка, которая промывается соответствующим раствором, в результате получается раствор с целевым радионуклидом.

Рисунок 11 – Схема радионуклидного генератора с прямой модой элюирования. 1 – Раствор для элюирования, 2 – колонка с сорбентом, 3 – пробирка с целевым радионуклидом

В некоторых случаях при классической схеме генератора нет возможности получить радионуклид в подходящем качестве, поэтому необходимо

совершенствовать и оптимизировать систему генератора. Таким образом, была разработана схема с реверсом (Рисунок 12), при которой предполагается уменьшение проскока материнского радионуклида. Раствор пропускается в прямом направлении для получения продукта, затем после процесса элюирования продукта происходит пропускание раствора в обратном направлении. Так можно удержать материнский радионуклид в небольшой зоне в середине колонки. Данная система показала хорошие результаты при работе с радионуклидными генераторами 44 Ti \rightarrow^{44} Sc [77,82] и 172 Hf \rightarrow^{172} Lu [83]. Химическая схема данных генераторов реализована на анионообменной хроматографии со смесью HCl/C₂H₂O₄. Для генератора 44 Ti \rightarrow^{44} Sc была выбрана смесь 0.07 M HCl/ 0.005 M C₂H₂O₄, данная система обеспечивает выход 44 Sc 97% и проскок 44 Ti 5·10⁻⁵%. Для 172 Hf \rightarrow^{172} Lu выбрана 0.16 M HCl/ 0.025 M C₂H₂O₄ с выходом 172 Lu 90% и проскоком 172 Hf $^{3\cdot10^{-6}}$.

Рисунок 12 – Схема радионуклидного генератора на основе реверсной схемы разделения.

 Шприц для создания давления и разрежения, 2 – вентиль, 3 – колонка со смолой, 4 – реверсно–накопительный резервуар, 5 – раствор для элюирования, 6 – резервуар с целевым радионуклидом

В таблице 5 приведены радионуклидные генераторы на основе пар радионуклидов IV– III (II) и II– III групп.

Таблица 5 – Радионуклидные пары IV–III (II), II–III валентных элементов медицинского назначения

Баналалал	Использо	Получение	Схема гене	Ссыл	
вание го РН		материнско го РН	Смола	Раствор	ка
$^{44}\text{Ti} \rightarrow ^{44}\text{Sc}$	ПЭТ	Ускоритель	AG1	HCl / C ₂ H ₂ O ₄	[77,82]
$^{47}Ca \rightarrow ^{47}Sc$	ΜβΤ	Ускоритель			
⁶⁸ Ge → ⁶⁸ Ga	ПЭТ	Ускоритель	SnO ₂ , TiO ₂	HC1	[84]
$^{86}Zr \rightarrow ^{86}Y$	ПЭТ	Ускоритель	_	_	-
			Dowey 50	EDTA	[85,86]
90Sr 90V	MBT	Pearton	Dowex 50	CH ₃ COONH ₄	[87]
51 - 1	1vip i	Гсактор	SR, DGA	HCl, HNO ₃	[88]
			SR, RE	HNO ₃	[89]
113 Sn \rightarrow	<u>በ</u> መጋዥፓ	Pearton	ZrO ₂	HCl	[90,91]
^{113m} In	040KI	Гсактор	Chelex 100	HC1	[92,93]
$^{229}\text{Th} \rightarrow \\ ^{225}\text{Ac}$	I MαT pa	Продукт распада ²³³ U Реактор	MP1, AG50	HNO ₃	[94]
			Dowex1, UTEVA, RE, UTEVA (3 колонки)	HNO3	[95]
			Dowex1, UTEVA, RE, TODGA, TEHDGA	HNO3	[96]
			Aminex–A5	$(NH_4)_3 C_6 H_5 O_7$	[97]
$^{228}\text{Th} \rightarrow \\ ^{224}\text{Ra}$	ΜαΤ	Продукт распада ²³² U либо ²²⁸ Ra	КРФ-20т-60	_	-
$224\mathbf{Pa} \rightarrow 212\mathbf{P}$:	Мет	Ганарадор	MP50	HCl, HI	[98]
$Ra \rightarrow DI$	ινια Ι	т енератор	Na ₂ TiO ₃ , D50	HC1	[99]

Продолжение таблицы 5

$\begin{array}{c} ^{227}\text{Th} \rightarrow \\ ^{223}\text{Ra} \end{array} \qquad M \alpha T$		Продукт	Dipex–2, AG 50	HNO ₃ , HCl	[100]
			Dowex 1, Dowex	HNO ₃ /	[101–
	ΜαΤ		50	CH ₃ OH	103]
	²²⁷ Ac	UTEVA, DGA	HNO ₃	[104]	
			AG 1, TEVA,		[105]
			UTEVA	псі	[105]

МαТ – мишенная альфа – терапия

М
р
Т
– мишенная бета – терапия

Радионуклидный генератор ⁶⁸Ge \rightarrow ⁶⁸Ga. ⁶⁸Ge (T_{1/2}=270.93 д) распадается путем электронного захвата ЭЗ (100%) в ⁶⁸Ga (T_{1/2}=67.71 мин), который в свою очередь подвержен ЭЗ (11%), а также испусканию позитронов (89%). Максимальная энергия позитронов 1.92 МэВ, средняя 0.89 МэВ.

Первый радионуклидный генератор ⁶⁸Ge \rightarrow ⁶⁸Ga был разработан в 1960 г. на основе жидкостной экстракции [106]. Далее были предложены системы на основе оксидов алюминия или циркония [107,108] и усовершенствованной жидкостной экстракции. Генераторы на основе оксида алюминия и EDTA показали отличные радиохимические характеристики: проскок материнского радионуклида <1.4 \cdot 10⁻⁵% и выход ⁶⁸Ga 95%. Однако нейтральные комплексы ⁶⁸Ga–*EDTA* не нашли широкого применения в ПЭТ.

Использование неорганических матриц для сорбции ⁶⁸Ge позволяют получить ⁶⁸Ga³⁺ в катионной форме с выходом 70–80% в хлористоводородной среде. Первый коммерчески доступный генератор на основе TiO₂ и HCl [84] открыл широкий путь к развитию радиофармацевтической химии металлов III группы.

На сегодняшний день имеется ряд коммерчески доступных генераторов (ЗАО Циклотрон, ITG, Eckert Ziegler, iThemba), основанных на неорганических сорбентах (оксиды титана, олова). Есть данные о том, что со временем ухудшаются параметры генераторов на неорганических сорбентах: уменьшается выход целевого радионуклида и увеличивается проскок материнского. Возможно, это

связано с тем, что неорганические сорбенты недостаточно химически стабильны с точки зрения сорбционных свойств. Стабильность свойств генератора особенно принципиальна при длительном использовании генератора. Поэтому актуален поиск новых перспективных сорбентов. Ионообменные сорбенты отличаются устойчивостью в большинстве кислот, а также высокой радиационной стойкостью (не разрушаются до ~ 10⁶ Гр).

Радионуклидный генератор ⁸⁶Zr \rightarrow ⁸⁶Y. ⁸⁶Zr (T_{1/2}=16.5 ч) распадается путем ЭЗ (100%) в ⁸⁶Y (T_{1/2}=14.74 ч). Распад ⁸⁶Y происходит через ЭЗ (67%) и β^+ – излучение (33%), также испускается ряд γ –квантов с различными энергиями от 443.1 до 1920.8 кэВ.

До настоящего времени не было коммерчески доступных генераторов 86 Zr \rightarrow 86 Y, а также возможных химических схем.

Радионуклидный генератор ⁹⁰Sr \rightarrow ⁹⁰Sr (T_{1/2}=28.91 л) распадается с испусканием β^- -частиц (100%) в ⁹⁰Y (T_{1/2}=64.05 ч). Также распад ⁹⁰Y с испусканием β^- -частиц (100%, E_{βmax}=2.28 МэВ) в стабильный цирконий. Есть несколько схем радионуклидного генератора ⁹⁰Sr \rightarrow ⁹⁰Y, основанных на электрохимическом разделении [109], технике SLM (supported liquid membrane) [110], ионообменной [85–87] и экстракционной хроматографиях [88,89].

Процесс электрохимического разделения [109] проходит в нитратной среде при pH 3, потенциале – 2.5 В и токе 100–200 мА на платиновых электродах. ⁹⁰Y осаждается на катоде, который удаляется и подвергается второму циклу электролиза. В систему добавляется новый катод, а электрод с ⁹⁰Y используется в качестве анода. На втором этапе электролиза ⁹⁰Y выщелачивается и осаждается на свежем катоде, который извлекается и погружается в ацетатный буфер. Было получено более 90% ⁹⁰Y с высокой радионуклидной чистотой.

Весьма распространены схемы разделения ⁹⁰Sr/⁹⁰Y, основанные на катионообменной хроматографии и хелатирующем агенте *EDTA pH* 4.8 [86]. Были проведены работы по масштабированию активности генератора [85], в результате

получали ~300 мКи ⁹⁰Y с проскоком ⁹⁰Sr < 0.1%. Такое содержание ⁹⁰Sr считается высоким, так как по фармакопеи содержание ⁹⁰Sr не должно превышать уровень $2 \cdot 10^{-3}$ %. В системе двухстадийной катионообменной хроматографии и ацетатного буфера *pH* 5.0–5.5 проскок значительно ниже (10⁻⁵%) [87].

Схемы с комбинированными экстракционными колонками, такими как SR Resin /DGA Resin [88] и SR Resin /RE Resin [89] (Eichrom) состоят из нескольких стадий очистки (4 колонки), также имеется стадия выпаривания промежуточного раствора [88], что является недостатком данных схем. Однако, при таких многоступенчатых системах с селективными сорбентами достигается высокая степень очистки.

Хотя все описанные системы дают неплохие результаты при разделении, но все же они не являются схемами генераторов в классическом понимании.

Радионуклидный генератор ²²⁹Th \rightarrow ²²⁵Ra \rightarrow ²²⁵Ac. ²²⁹Th (T_{1/2}= 7880 л) распадается с испусканием α -частиц (100%) в ²²⁵Ra (T_{1/2}=14.9 д), который в свою очередь распадается в ²²⁵Ac (T_{1/2}=9.92 д). Материнский радионуклид ²²⁹Th получают из ²³³U (T_{1/2}=1.5919·10⁵ л). Существуют несколько схем радионуклидного генератора ²²⁹Th \rightarrow ²²⁵Ra \rightarrow ²²⁵Ac [94–96,111].

Четырехступенчатая схема основана на анионообменной и катионообменной хроматографий [94]. На стадии анионообменной хроматографии (MP1, 1 л) в среде азотной кислоты из ²²⁹Th выделяются вместе ²²⁵Ra и ²²⁵Ac с коэффициентом разделения 10^6 . На стадии катионообменной хроматографии (AG 50×4) разделяются Ra и Ac с коэффициентом разделения 10^2 . Средняя радионуклидная чистота ²²⁵Ac составляет 99.6±0.7%. В данной схеме после каждой колонки производится выпаривание элюатов больших объемов (до 500 мл).

В методе [95] раствор (500 мл) содержащий ²²⁹Th и дочерние продукты в 8 M HNO₃ пропускают через анионообменную колонку (Dowex 1×8, 80 мл), где задерживаются радионуклиды. Далее с колонки смывают ²²⁹Th в 0.05 M HNO₃, раствор высушивают, разбавляют до 8 M HNO₃ и сохраняют для дальнейшего использования. ²²⁵Ra и ²²⁵Ac разделяют на 2 колонках, заполненных

экстракционными смолами UTEVA Resin и RE Resin. Доочистка и кондиционирование ²²⁵Ac проводится на 3 связанных колонках UTEVA Resin. В модификации этой методики [96] тандемные колонки UTEVA Resin были заменены на TODGA Resin или TEHDGA Resin колонки. Обе системы обеспечивают > 98% 225 Ac. В обоих системах производится выпаривание промежуточных растворов. Такого рода манипуляции весьма усложняют процесс и увеличивают время.

В альтернативном методе используется катионообменная колонка (Aminex-A5), разделение происходит в цитратной среде [111]. ²²⁹Th и дочерние продукты наносили на колонку в растворе 0.25 M ацетата аммония *pH* 0. ²²⁹Th вымывали с колонки в растворе 0.25 M ацетата аммония *pH* 2.0–2.5 (3 мл). При *pH* > 4 вымывается ²²⁵Ac (1 мл), ²²⁵Ra вымывается в азотнокислой среде. Также есть возможность оставить ²²⁵Ra на колонке и использовать ее в качестве генератора ²²⁵Ra \rightarrow ²²⁵Ac. Особенностью этой методики является простота схемы без множественных стадий разделения и выпаривания.

1.6 Методы получения радионуклидов на ускорителях

Можно выделить принципиально три способа наработки радионуклидов: посредством ускорителя заряженных частиц, ядерного реактора или радионуклидного генератора. Кроме этого, можно отдельно выделить наработку на фотонах высоких энергий, которые также получают на ускорителях заряженных частиц (электронах).

При облучении мишеней заряженными частицами в ускорителях порядковые номера элемента–мишени и продукта отличаются, в результате есть возможность выделить радионуклид без носителя. Обычно для получения медицинских радионуклидов используют ускорители протонов, дейтронов или α–частиц. Реакции протекающие при облучении мишени заряженными частицами характеризуются определенной функцией возбуждения. Для получения
максимального выхода целевого радионуклида и минимизации примесей, выбирают энергию налетающих частиц таким образом, чтобы функция возбуждения реакции с наработкой целевого радионуклида была в максимуме, а по сопутствующим реакциям была в минимуме. В настоящее время есть множество ускорителей протонов с энергией 8–30 МэВ, на которых нарабатывают медицинские изотопы [112]. С повышением энергии протонов открываются каналы реакций (p, n), (p, 2n), (p, 3n) и т.д.

В основном два параметра характеристики пучка заряженных частиц влияют на производство изотопов: от энергии налетающих частиц зависят ядерные реакции, то есть наработка определенных радиоизотопов; от интенсивности пучка зависит выход радиоизотопов. Изменяя эти параметры, а также параметры мишени возможно подобрать оптимальные условия наработки целевого радионуклида.

В таблице 6 показаны медицинские радионуклиды, получаемые в реакциях на протонах в зависимости от их энергий.

Таблица 6 – Примеры радионуклидов медицинского назначения, производимые на ускорителях протонов

Энергия протонов, МэВ	Радионуклид
<16	¹¹ C, ¹⁸ F, ¹³ N, ¹⁵ O, ⁴⁸ V, ⁶⁸ Ga, ⁸⁶ Y, ⁸⁹ Zr
17 <e<30< td=""><td>⁶⁷Ga, ⁶⁸Ge, ¹¹¹In, ^{123,124}I, ²⁰¹Tl</td></e<30<>	⁶⁷ Ga, ⁶⁸ Ge, ¹¹¹ In, ^{123,124} I, ²⁰¹ Tl
>30	⁶⁸ Ge, ⁸² Sr, ²²⁵ Ac

Первичный выбор энергии облучения мишени производится по данным функции возбуждения (дифференциальных сечений) интересующей реакции (Рисунок 13). Однако на практике картина сложнее, так как наработка (выход) определенных изотопов пропорциональна свертке функции возбуждения по пробегу налетающих частиц.

Рисунок 13 – Сравнение функций возбуждения реакций: a) Ga(p, xn)⁶⁸Ge; b) Ge(p, pxn)⁶⁸Ge; c) Zn(α , xn)⁶⁸Ge [113]

Как видно из Рисунка 13, при одинаковых энергиях дифференциальное сечение для реакции при участии α -частиц (Zn(α , xn)⁶⁸Ge) на порядок выше, чем протонов (Ge(p, pxn)⁶⁸Ge). Хотя по данным о выходах на толстой мишени (Рисунок 14) можно сделать вывод, что намного эффективнее нарабатывать ⁶⁸Ge по реакции Ge(p, pxn)⁶⁸Ge.

Рисунок 14 – Сравнение выходов реакций на толстой мишени: a) Ga(p, xn)⁶⁸Ge; b) Ge(p, pxn) ⁶⁸Ge; c) Zn(α , xn) ⁶⁸Ge [113]

Эффективность наработки изотопов по реакции (p, n) на легких ядрах выше, чем на тяжелых. С ростом заряда ядра–мишени становятся эффективнее наработка изотопов по реакциям с вылетом большего числа нейтронов.

При производстве ⁶⁸Ge на природных галлиевых мишенях максимум функции возбуждения приходится на энергию протонов ~ 20 МэВ (Рисунок 15). Однако на толстой мишени выход значимо возрастает с увеличением энергии протонов (Рисунок 14).

Рисунок 15 – Рекомендованные МАГАТЭ дифференциальные сечения реакции Ga(p, xn)⁶⁸Ge [114]

После облучения мишени необходимо выделить целевой радионуклид из материала мишени. Первым этапом выделения радионуклида является растворение мишени, далее раствор облученной мишени проходит через этап грубой очистки. Обычно при этом этапе микроколичество радионуклида отделяется от макроколичества материала мишени. Третий этап предназначен для разделения целевого радионуклида от основных примесей. Весьма удобно проводить данные операции на связанных между собой нескольких хроматографических колонках.

Германий–68. Для генератора ${}^{68}\text{Ge} \rightarrow {}^{68}\text{Ga}$ материнский радионуклид ${}^{68}\text{Ge}$ можно получить в ряде реакций на циклотроне. Наиболее эффективным путем представляется протонное облучение мишеней из галлия. Высокие значения сечения реакции (p, 2n) позволяют облучать природный галлий при средних энергиях протонов от 20 до 30 МэВ. Особое внимание стоит уделять подготовке мишеней. Металлический Ga из–за низкой температуры плавления (29.7°C) обычно заключают в защитную оболочку из Nb.

В настоящее время есть ряд радиохимических методов для выделения ⁶⁸Ge. Основные методы включают перегонку ⁶⁸Ge в виде тетрахлорида [106,115], ионообменную хроматографию [116,117] и жидкостную экстракцию [118–122]. Наиболее предпочтительным методом разделения является жидкостножидкостная экстракция с использованием CCl₄ [123]. После обратной экстракции в воду достигаются высокие коэффициенты разделения около 10⁶. Высокая достигается благодаря радионуклидная чистота физическому распаду короткоживущих радионуклидов (⁶⁷Ga и ⁶⁹Ge) и радиохимическому отделению долгоживущих радионуклидов.

Галлий–68. Из возможных ядерных реакций на циклотроне по получению 68 Ga предпочтительной является (p, n) на 68 Zn (природное содержание 18.45%) при средних и малых энергиях протонов [124]. Использование изотопно–обогащенного 68 Zn уменьшает образование более долгоживущих радионуклидов 66 Ga ($T_{1/2} = 9.30$ ч) и 67 Ga ($T_{1/2} = 78.28$ ч). Для облучения используются твердая или жидкая мишени. В использовании той или иной мишени есть свои преимущества. Так как в твердой мишени более высокая концентрацию цинка, чем в жидкой мишени, использование твердой мишени приводит к значительно более высоким выходам 68 Ga. В случае использования жидкой мишени дальнейший химический процесс выделения 68 Ga более удобен и занимает меньшее время, так как в нем отсутствует процесс растворения.

Существует ряд методов отделение Ga от Zn, такие как твердофазная экстракция, жидкостная экстракцию, осаждение [125,126]. Кроме того, сообщалось о термической диффузии ⁶⁸Ga из фольги [127] с последующей химической очисткой.

На первой стадии очистки предпочтительнее использование катионообменной или гидроксаматной смол [128,129]. Для дальнейшего уменьшения количества металлических примесей может быть проведена дополнительная стадия очистки. Широко используются анионообменная смола AG 1×8, а также экстракционные смолы TK200, UTEVA Resin, DGA Resin.

Цирконий–86. Для генератора ⁸⁶Zr \rightarrow ⁸⁶Y материнский радионуклид ⁸⁶Zr предпочтительно нарабатывать протонами на мишени из природного иттрия (100%). В реакциях ⁸⁹Y (р, 1–5n) производятся такие изотопы циркония как ⁸⁹Zr ($T_{1/2}=78.41$ ч), ⁸⁸Zr ($T_{1/2}=83.4$ д), ⁸⁷Zr ($T_{1/2}=1.68$ ч), ⁸⁶Zr ($T_{1/2}=16.5$ ч) и ⁸⁵Zr ($T_{1/2}=7.86$ мин). Функции возбуждения по всем вероятным ядерным реакциям были получены ранее [130,131]. Согласно литературным данным по дифференциальным сечениям, максимум для реакции ⁸⁹Y (р, n)⁸⁹Zr менее 20 МэВ и для реакции ⁸⁹Y (р, 2n)⁸⁸Zr между 20 и 40 МэВ. Максимум функции возбуждения для производства ⁸⁶Zr более 50 МэВ. Рисунок 16 представляет собой часть Карты Радионуклидов с интересующими нас радионуклидами иттрия и циркония [132].

Рисунок 16 – Часть карты радионуклидов [132]

Иттрий–86. ⁸⁶Y можно нарабатывать на циклотронах малого и среднего размера по реакциям (p, n) [133–139] и (d, 2n) на ⁸⁶Sr; (p, 3n) на ⁸⁸Sr; (p, α n) на ⁹⁰Zr; (p, x) на ^{nat}Zr [140–143]; (³He, xn) на ^{nat}Rb [144]; (α , 3n) на ⁸⁵Rb. Наиболее распространенная реакция (p, n) на ⁸⁶Sr при энергии протонов 9–18 МэВ. Для того чтобы произвести радионуклидно чистый ⁸⁶Y необходимо использовать высокообогащенную мишень ⁸⁶Sr, как преимущество данного метода можно отметить использование небольших медицинских циклотронов для производства этого радионуклида в количествах, достаточных для клинического применения.

Есть несколько основных методов выделения ⁸⁶Y из облученных стронциевых мишеней: соосаждение и ионный обмен [133,138,145], электролиз [135–137], одноколоночная и многоколоночная хроматографии [134,139,146], экстракция [134], осаждение [147,148]. В методе соосаждения облученный обогащенный ⁸⁶SrCO₃ растворяли в небольшом объеме HCl, ⁸⁶Y соосаждали с La(OH)₃ с добавлением NH₄OH. Затем отделение радиоиттрия от La(III) осуществляли с помощью катионообменной хроматографии с α -гидроксиизобутиратной кислотой. В одноколоночных хроматографических методах были использованы катионообменные смолы Dowex 50w×8 [134], Chelex 100 [139], анионообменная

смола Dowex 21k и экстракционная смола DGA Resin [146]. Многоколоночный хроматографический метод разделения основан на последовательно связанных колонках, заполненных смолами Sr–селективной, RE–SPEC и Aminex A5. Конечный продукт ⁸⁶Y получали в азотнокислой среде. Высокая удельная активность препарата ⁸⁶Y доказана успешным связыванием с *DOTA*–биотином.

Актиний–225. Существует несколько способов производства ²²⁵Ac на ядерных установках: облучение ²³²Th протонами высоких энергий (> 100 МэВ) по реакции деления ²³²Th (p, x); облучение ²²⁶Ra протонами с низкой энергией (< 20 МэВ) по реакции ²²⁶Ra (p, 2n); фотоядерная реакция ²²⁶Ra (γ , n) ²²⁵Ra \rightarrow ²²⁵Ac.

Существует ряд методов выделения ²²⁵Ac из облученных ²³²Th мишеней, а именно, хелатирование/катионный обмен и твердофазная экстракция [149–151], комбинация анионного и катионного обмена [152], жидкостно–жидкостная и твердофазная экстракция [153,154]. При облучении тория протонами высоких энергий вместе с ²²⁵Ac производится долгоживущий ²²⁷Ac (T_{1/2}=21.772 л), который невозможно химически отделить. В среднем уровень ²²⁷Ac составляет < 0.1% от активности ²²⁵Ac.

 225 Ac получаемый при облучении 226 Ra протонами получается с высокой радионуклидной чистотой, так как количество производимых во время облучения других изотопов актиния ($^{226, 224}$ Ac) можно уменьшить выдержкой мишени, а количество 227 Ac не значительно. Выделение 225 Ac из 226 Ra матрицы производят при помощи экстракционной хроматографии [155] на основе комбинации DGA Resin / LN Resin (Eichrom) в среде азотной кислоты. Эти стадии проводят дважды, затем, чтоб перевести препарат 225 Ac из нитратной в хлоридную форму используют анионообменную колонку. Несмотря на явные преимущества такой наработки 225 Ac: высокий выход и доступность ускорителей низких энергий, до сих этот метод не нашел широкого практического применения. Это обусловлено с объективными сложностями с работой с радиевыми мишенями.

1.7 Выводы к литературному обзору

По результатам литературного обзора можно сделать следующие выводы:

1. В последнее время стремительно развиваются методы ядерной медицины в лечении и диагностике онкологических заболеваний. Все шире используются трехвалентные металлы (например, ⁶⁸Ga, ^{86,90}Y и ²²⁵Ac) в концепции тераностики. 2. Радионуклидный генератор является удобным способом получения радионуклидов, который позволяет получить радионуклид с высокой удельной активностью и с минимальным содержанием примесей. Есть ряд генераторов 68 Ge \rightarrow 68 Ga, 90 Sr \rightarrow 90 Y и 229 Th \rightarrow 225 Ra \rightarrow 225 Ac, основанных на неорганических и органических сорбентах. Однако имеются проблемы, связанные с загрязнением материнским радионуклидом (обычно с большим периодом полураспада) как и препаратов так и рабочих помещений. Для уменьшения количества проскока материнского радионуклида целесообразно использовать схему генератора с реверсом, когда при пропускании раствора в прямом и обратном направлениях, материнский радионуклид остается в небольшой зоне. Еще одним преимуществом реверсного генератора является то, что при использовании системы со смыванием материнского радионуклида со смолы можно уменьшить радиационное влияние на нее. Ионообменные смолы отличаются высокой ёмкостью (в десятки раз превышающей таковую у экстракционных смол и неорганических сорбентов) и достаточно высокой радиационной устойчивостью, а также устойчивостью к концентрированным кислотам.

3. В литературе отсутствуют данные о существующих генераторах 86 Zr \rightarrow 86 Y. При этом 86 Y является весьма ценным диагностическим радионуклидом для ПЭТ в тераностической паре с 90 Y, а также с другими III валентными радионуклидами.

4. Качество конечного целевого продукта, полученного посредством генератора, зависит от радионуклидной чистоты материнского радионуклида, которая в свое время зависит от эффективности методик получения и очистки. В большинстве случаев стоит задача извлечения микроколичества радионуклида из

макроколичеств материала мишени. Для таких задач подходит эффективный и в тоже время удобный в использовании прямоточный метод выделения, основанный на нескольких связанных колонках. В таких системах первым этапом проходит грубая очистка от материала мишени, вторым – тонкая очистка и третьим – кондиционирование. В некоторых случаях объединяют второй и третий этапы. Для разработки таких систем необходимо иметь информацию о химическом поведении элементов в широком кругу химических систем, прежде всего коэффициенты распределения советующих элементов на сорбентах в растворах различных элюентов.

5. Карбоновые кислоты являются комплексообразующими, образование комплексов разных зарядов с катионами дает возможность их качественного разделения на ионообменниках. В этом смысле весьма востребованы данные по коэффициентам распределения II, III и IV на ионообменниках с карбоновыми кислотами. Также при разделении из мишени весьма интересно иметь данные по сорбции целевых элементов в присутствии макроколичеств веществ.

ГЛАВА 2. МЕТОДИЧЕСКАЯ ЧАСТЬ

2.1 Обоснование выбора пар радионуклидов для создания радионуклидных генераторов

При создании радионуклидных генераторов был осуществлен подбор генетически связанных пар на основе ряда критериев:

а) применение дочернего радионуклида в ядерной медицине;

б) получение медицински значимых радионуклидов посредством радионуклидного генератора;

 в) ядерно-физические и химические характеристики материнского и дочернего радионуклидов;

г) доступность материнского радионуклида;

д) химические аспекты разделения генетических пар.

Существует несколько десятков радионуклидов, подходящих для применения в мишенной терапии и диагностики. В целях тераностики использование радионуклидов III валентных элементов в виду их ядерно-физических характеристик и химических свойств является перспективным. Использование комплексов радиометалл – лиганд в мишенной терапии и диагностике позволяет раскрыть весь потенциал 3⁺ радиометаллов. В настоящее время *DOTA* (и ее производные) являются самыми широко распространёнными хелаторами. Оптимизация имеющихся методик синтеза радиофармпрепаратов на основе III валентных элементов, а также применение новых более доступных и более «качественных» радионуклидов откроют возможность для расширения линейки радиофармпрепаратов.

Важными ядерно-физическими характеристиками при выборе радионуклидов, подходящих для медицины, являются период полураспада, тип, энергия и интенсивность целевого излучения, а также отсутствие нежелательной дополнительной дозовой нагрузки на организм. В случае ПЭТ радионуклидов для лучшего пространственного разрешения необходимы позитронные излучатели с минимальной средней энергией позитрона и максимальным выходом. Выбор терапевтического радионуклида зависит от испускаемого излучения (α -, β ⁻- частицы, Оже электроны), для опухолей относительно среднего размера больше подходят β ⁻- излучающие радионуклиды (¹⁷⁷Lu, ⁹⁰Y и др.), для опухолей меньшего размера α - излучающие радионуклиды (²²⁵Ac, ²¹³Bi и др.) или Оже – эмиттеры (¹¹⁹Sb и др.).

Также период полураспада радионуклида должен соотноситься с периодом полувыведения биологического вектора, что в свое время отчасти зависит от размера молекулы и его фармокинетики. Если период полураспада радионуклида слишком короткий, большая часть распадов радионуклидов произойдет до того, распределение биологического вектора будет характеризоваться как максимальным соотношением опухоль/фон. И наоборот, слишком долгий период полураспада радионуклида может привести к нежелательной дозе облучения других тканей после того, как меченое соединение или просто радионуклид выйдут опухоли. Для диагностических радионуклидов оптимальным периодом ИЗ полураспада считается время от нескольких десятков минут до нескольких десятков часов, в то время как для терапевтических радионуклидов от нескольких десятков часов до 1-2 десятков дней.

Системы радионуклидных генераторов играют значительную роль в обеспечении диагностических и терапевтических радионуклидов для ядерной медицины. Для того чтобы радионуклидную генетическую пару можно было использовать в виде генератора необходимо, чтобы период полураспада материнского радионуклида был больше периода дочернего. В таблице 7 показаны пары генетически связанных радионуклидов, подходящих для использования в ядерной медицине. С физической точки зрения есть ряд параметров, которые существенным образом сказываются на эффективности работы генератора. Период полураспада материнского радионуклида с одной стороны определяет срок службы генератора, с другой стороны для слишком долгоживущего радионуклида имеются проблемы с наработкой необходимых значимых активностей. Последнее замечание более критично для ускорительных радионуклидов. Период полураспада

материнского радионуклида определяет периодичность элюирования генератора, накопления радионуклида после очередного так как скорость выделения определяется именно этим параметром. Кроме этого, конечно же, нужно помнить, что оптимум времени жизни для диагностических радионуклидов (несколько минут – 1 день) меньше таковой для терапевтических (несколько дней). Важным периодов параметром является соотношение полураспада материнского радионуклида к дочернему радионуклиду, который определяет максимальное число циклов работы радионуклидного генератора (цикличность). Хотя здесь может сказываться и другие факторы (соотношение периода полураспада дочернего радионуклида с рабочим днем персонала, или временем накопления статистики на диагностическом оборудовании и т.п.). Конечно же необходимо обращать внимание на тип распада и энергию соответствующих частиц. Помимо того, что эти параметры для дочернего радионуклида и определяют его применимость для той или иной задачи, также нужно рассматривать и их влияние на радиационное разрушение материалов генератора.

Таблица 7 – Ядерно-физические характеристики генетически связанных пар радионуклидов

	Материнский радионуклид			Дочерний радионуклид			Щ =
Пара	т	Произво	Тип	Tra	Тип	Примене	T _{1/2MP} /
	1 1/2	дство	распада	1 1/2	распада	ние	Т1/2ДР
⁴⁴ Ti / ⁴⁴ Sc	59.10 л	У	EC	3.97 ч	β^+	ПЭТ	1.3·10 ⁵
⁴⁷ Ca / ⁴⁷ Sc	4.54 д	Р	β⁻	3.35 д	β⁻	MPT	1.4
⁵² Fe / ^{52m} Mn	8.28 ч	У	β^+	21.10 мин	β^+	ПЭТ	23.5
$^{62}Zn / ^{62}Cu$	9.19 ч	У	EC	9.67 мин	β^+	ТЭТ	57.0
⁶⁶ Ni / ⁶⁶ Cu	54.60 ч	Р	β⁻	5.12 мин	γ, β ⁻	MPT	$6.4 \cdot 10^2$
⁶⁸ Ge / ⁶⁸ Ga	270.93 д	У	EC	67.71 мин	β^+	ПЭТ	$2.1 \cdot 10^{6}$
72 Se / 72 As	8.40 д	У	EC	26 ч	β^+	ПЭТ	7.8
⁸¹ Rb / ^{81m} Kr	4.57 ч	У	EC	13.1 сек	γ	ОФЭКТ	$1.3 \cdot 10^4$
$^{82}Sr / ^{82}Rb$	25.35 д	У	EC	1.26 сек	β^+	ПЭТ	$1.7 \cdot 10^{6}$

⁹⁰ Sr / ⁹⁰ Y	28.91 л	Р	β⁻	64.05 ч	β⁻	MPT	$3.9 \cdot 10^3$
⁹⁹ Mo / ^{99m} Tc	65.92 ч	Р	β⁻	6.01 ч	γ	ОФЭКТ	11.0
¹⁰³ Ru / ^{103m} Rh	39.25 д	Р	β⁻	56.11 мин	γ	MPT	$1 \cdot 10^{3}$
110 Sn / 110m In	4.15 ч	У	EC	69.10 мин	β^+	ПЭТ	3.6
¹¹² Pd / ¹¹² Ag	21.04 ч	Р	β⁻	3.13 ч	γ, β⁻	MPT	6.7
¹¹⁸ Te / ¹¹⁸ Sb	6 д	У	EC	3.60 мин	β^+	ПЭТ	$2.4 \cdot 10^3$
¹²² Xe / ¹²² I	20.1 ч	У	EC	3.63 мин	β^+	ПЭТ	$3.3 \cdot 10^2$
¹²⁸ Ba / ¹²⁸ Cs	2.43 д	У	EC	3.64 мин	β^+	ПЭТ	9.6·10 ²
132 Te / 132 I	3.20 д	Р	β⁻	2.30 д	γ, β⁻	Терапия	1.4
¹³⁴ Ce / ¹³⁴ La	3.16 д	У	EC	6.45 мин	β^+	ПЭТ	$7.0 \cdot 10^2$
¹³⁷ Cs / ^{137m} Ba	30.08 л	Р	β ⁻	2.55 мин	γ	Диагнос	$6.2 \cdot 10^{6}$
						тика	
¹⁴⁰ Nd / ¹⁴⁰ Pr	3.37 д	У	EC	3.39 мин	β^+	ПЭТ	$1.4 \cdot 10^3$
¹⁶⁶ Dy / ¹⁶⁶ Ho	81.6 ч	Р	β⁻	26.82 ч	β-	MPT	3.0
¹⁸⁸ W / ¹⁸⁸ Re	69.78 д	Р	β⁻	17.00 ч	β⁻	MPT	98.5
211 Rn / 211 At	14.6 ч	У	α, EC	7.21 ч	α	MPT	2.0
²¹² Pb / ²¹² Bi	10.62 ч	Р	β⁻	60.55 мин	β⁻, α	MPT	10.5
²²⁵ Ac / ²¹³ Bi	9.92 д	Распад /	α	45.59 мин	α	MPT	$3.3 \cdot 10^2$
		У					
²²⁵ Ra / ²²⁵ Ac	14.9 д	Распад /	α	9.92 д	α	MPT	1.5
		У					
²²⁶ Ra / ²²² Rn	1600 л	Распад	α	3.82 д	α	MPT	$1.5 \cdot 10^5$
²²⁷ Th / ²²³ Ra	18.70 д	Распад	α	11.43 д	α	MPT	1.6
229 Th / 225 Ac	7880 л	Распал	α	9.92 д	α	MPT	$2.9 \cdot 10^{6}$

Продолжение таблицы 7

У – ускоритель, Р – реактор, МРТ – мишенная радионуклидная терапия, ПЭТ – позитронно-эмиссионная томография, ОФЭКТ – однофотонная эмиссионная компьютерная томография, Ц – цикличность, МР – материнский радионуклид, ДР – дочерний радионуклид.

Как уже отмечалось выше, период полураспада материнского радионуклида – один из главных факторов, который определяет выбор типа радионуклидного генератора. Когда период полураспада материнского радионуклида относительно

небольшой ($T_{1/2} \sim$ несколько дней) реализуется классическая схема с прямой модой элюирования (99 Mo \rightarrow 99m Tc). Но такая схема не подходит для более долгоживущих материнских радионуклидов. При многократном элюировании даже при том, что коэффициенты распределения в выбранной рабочей среде довольно большие, материнский радионуклид продвигается вниз по колонке. Это негативно влияет на качество получаемого продукта. Подобное происходит и в случае, когда материнский радионуклид распределён по всему объёму колонки. Таким образом, в генетических парах с долгоживущим материнским радионуклидом перспективно реализовывать разделения на основе реверсных схем. При многократном использовании радионуклидного генератора возрастает дозовая нагрузка на сорбент, в таких случаях важно подбирать сорбенты с высокой радиационной устойчивостью и с сорбционными свойствами стабильными во времени, такие как ионообменные смолы. Дополнительно для снятия дозовой нагрузки возможна реализация генераторной схемы со смыванием материнского радионуклида.

Для обеспечения высокого выхода, хорошей удельной активности и радионуклидной чистоты материнских радионуклидов необходимо комплексно решать следующие проблемы: а) выбор способа получения; б) выбор оптимальных параметров облучения; в) конструкция мишени и ее восстановление; г) выбор метода выделения материнского радионуклида из материала мишени. Немаловажным аспектом при разработке генератора является конечная его стоимость, которая зависит в той или иной мере от доступности материнского радионуклида.

В генетических парах нейтронодефицитных ядер, как и материнское ядро, так и дочернее ядро распадаются посредством испускания позитронов или захвата электронов. В таких парах материнские радионуклиды производятся в основном на ускорителях. Среди систем генераторов ПЭТ – радионуклидов с относительно долгоживущими материнскими изотопами наиболее широко используются генераторы ⁴⁴Ti \rightarrow ⁴⁴Sc, ⁶⁸Ge \rightarrow ⁶⁸Ga и ⁸²Sr \rightarrow ⁸²Rb.

Более доступные и относительно дешевые материнские радионуклиды можно производить на ядерных реакторах в реакциях (n, γ) или (n, f). Таким способом

50

производят материнские радионуклиды для генераторов ОФЭКТ или терапевтических (β^{-}) радиоизотопов. Одним из наиболее широко известных и часто используемых (n, f) реакции является производство материнских радионуклидов ⁹⁰Sr и ⁹⁹Mo при делении ²³⁵U тепловыми нейтронами. По ¹⁸⁶W(n, γ)¹⁸⁷W(n, γ)¹⁸⁸W реакции получают материнский изотоп для генератора ¹⁸⁸W \rightarrow ¹⁸⁸Re.

При работе генератора разделение генетически связанных пар отличаются от классических разделения. Принципиальным методов отличием является дочернего необходимость периодического разделения радионуклида OT материнского. В классическом случае материнский изотоп фиксируется на сорбенте (неподвижном носителе), а дочерний элюируется подходящим раствором. При этом если в «простом» разделении двух элементов на колонке коэффициент разделения должен быть около $2 \div 10$, то при работе генератора необходимо этот коэффициент разделения, умножить на цикличность. Отсюда вытекает, что для качественного разделения генетических радионуклидов в генераторе с большой цикличностью необходимо подобрать систему сорбент-раствор с большим фактором разделения, либо возможно использовать реверсный генератор.

Еще одним аспектом при генераторном разделении является то, что химическое поведение элементов в микроконцентрациях отличаются от поведения элементов в макроконцентрациях. Появляется задача разделения небольшого количества ядер друг от друга. Из-за относительно короткого периода полураспада дочернего радионуклида методы разделения должны быть простыми, быстрыми и эффективными с возможностью автоматизации. В системах генетических пар для обеспечения высокого выхода дочернего радионуклида, минимальных рабочих объёмов растворов, максимальной удельной активности из всех химических (осаждение / соосаждение, экстракция, ионообменная методов разделения хроматография и др.) наиболее оптимальными и подходящими являются ионообменная твердофазная экстракционная хроматографии. Также ИЛИ необходимо учитывать релятивистские эффекты, происходящие в системе при распаде материнского радионуклида.

51

При выделении III валентных медицинских радионуклидов стоит задача разделения в основном генетических пар элементов соседних групп (IV-III, II-III валентных). Разделение генетических пар ядерных изомеров ($^{44m}Sc \rightarrow ^{44}Sc$, $^{117m}Lu \rightarrow ^{177}Lu$) или элементов одной группы ($^{134}Ce \rightarrow ^{134}La$, $^{140}Nd \rightarrow ^{140}Pr$, $^{166}Dy \rightarrow ^{166}Ho$) основывается на использовании ациклических (*DTPA*) и макроциклических (*DOTA*) лигандов с относительно медленной кинетикой.

При выборе методики разделения пары IV-III валентных элементов необходимо учитывать, что 4+ зарядные катионы имеют большую склонность к гидролизу и создают довольно прочные комплексы с большинством комплексообразующих соединений. Существуют удачные схемы при разделении генетических пар Ti (IV) – Sc (III) и Hf (IV) – Lu (III) на основе ионообменной хроматографии в оксалатной среде с добавлением хлорид-анионов. Такую схему целесообразно реализовать для аналогичных генетических пар, например, ${}^{68}\text{Ge} \rightarrow {}^{68}\text{Ga}$ и ${}^{86}\text{Zr} \rightarrow {}^{86}\text{Y}$.

II валентные элементы обычно создают менее стабильные комплексы с комплексообразователями, чем III валентные. Как уже обсуждалось в главе 1.4, II-III валентные элементы возможно разделять на катионите в растворе уксусной кислоты с добавлением ацетата аммония. Так как коэффициенты разделения не очень велики, для долгоживущих II валентных материнских радионуклидов лучше использовать реверсную схему генератора, например для генетической пары 90 Sr / 90 Y (90 Sr, T_{1/2} = 28.91 л). В случае относительно короткоживущих II валентных материнских радионуклидов подойдет классический (прямой) тип элюирования генератора, например для пары 225 Ra / 225 Ac и 47 Ca / 47 Sc.

На основании рассмотренных выше критериев выбора генетических пар, а также литературных данных (глава 1) был осуществлен следующий подбор (Рисунок 17).

Рисунок 17 – Схема подбора генетических пар для радионуклидных генераторов

Были рассмотрены радионуклиды используемые в тераностике как и в качестве диагностического, так и терапевтического компонентов:

- 1. $^{123}I / ^{131}I$
- 2. 99m Tc, 18 F / 223 Ra
- 3. 68 Ga, 111 In / 177 Lu, 90 Y
- 4. 68 Ga, 18 F / 177 Lu, 225 Ac
- 5. 99m Tc / 90 Y

Среди ряда тераностических радионуклидов были выбраны те, которые возможно получить посредством радионуклидных генераторов:

1.
$${}^{68}\text{Ge} \rightarrow {}^{68}\text{Ga}$$
2.
$${}^{90}\text{Sr} \rightarrow {}^{90}\text{Y}$$
3.
$${}^{99}\text{Mo} \rightarrow {}^{99m}\text{Tc}$$
4.
$${}^{227}\text{Th} \rightarrow {}^{223}\text{Ra}$$
5.
$${}^{229}\text{Th} \rightarrow {}^{225}\text{Ac}$$

Как известно, существующие генераторы ${}^{99}Mo \rightarrow {}^{99m}Tc$ и ${}^{227}Th \rightarrow {}^{223}Ra$ работают весьма эффективно и не нуждаются в усовершенствовании. Чего нельзя

сказать об остальных генераторных системах. Например, хотя есть ряд коммерческих генераторов ⁶⁸ Ge \rightarrow ⁶⁸ Ga в виду их несовершенства, а именно ухудшения основных параметров генератора со временем, необходим поиск новых перспективных сорбентов и подходящих систем. Имеющиеся системы разделения ⁹⁰ Y от ⁹⁰ Sr дают неплохие результаты при разделении, но они не являются радионуклидными генераторами в классическом понимании. Так как материнский радионуклид ²²⁹ Th мало доступен, предлагается рассмотреть другие пути наработки ²²⁵ Ac, например, по реакции глубокого расщепления тория при облучение протонами средних энергий. Учитывая то, что материнские радионуклиды (⁶⁸Ge, T_{1/2} = 270.93 д; ⁹⁰Sr, T_{1/2} = 28.91 л; ²²⁹Th, T_{1/2} = 7880 л) у всех рассматриваемых генераторов относительно долгоживущие целесообразно разработка генераторов с реверсным типом элюирования. Также предлагается разработка радионуклидного генератора на основе новой генетической пары ⁸⁶Zr (T_{1/2} = 16.5 ч) / ⁸⁶Y (T_{1/2} = 14.74 ч), которая не рассматривальсь ранее.

2.2 Химические реактивы и радиоактивные метки

В исследованиях использовались следующие реактивы: бидистилированная вода, азотная кислота (ос.ч. 18–4, ГОСТ 11125–84), хлористоводородная кислота (ос.ч. 20–4, ГОСТ 14261–77), этандиовая кислота ($C_2H_2O_4 \times 2H_2O$, ос.ч. СТП ТУ КОМП 3–104–09), трихлоруксусная кислота (х.ч. СТП ТУ КОМП 2-736-15), а также ионообменные смолы: Dowex 1×8, Dowex 50×8, AG 1×8 (Sigma Aldrich) и экстракционные смолы: UTEVA Resin (Dipentyl pentylphosphate), SR Resin (4,4'(5')–di–t–butylcyclohexano–18–crown–6), DGA Resin (normal, N,N,N',N'–tetra– n–octyldiglycolamide), ZR Resin (TrisKem). В целях определения коэффициентов распределения Ge(IV) была использована радиоактивная метка ⁶⁸Ge. Радионуклид ⁶⁸Ge в 0.5 M HCl был куплен в ЗАО «Циклотрон» (г. Обнинск, Россия). По паспорту содержание радиоактивных примесей составляет < 0.2 % и нерадиоактивных примесей – Fe, Cu $\leq 1.35 \cdot 10^{-8}$, Ga $\leq 8 \cdot 10^{-8}$, Ni $\leq 1.35 \cdot 10^{-8}$.

В исследованиях сорбции пар Sr(II) – Y(III) и Zr(IV) – Y(III) были использованы радиоактивные метки ⁸⁵Sr, ⁸⁸Y и ⁸⁸Zr. Радионуклиды были получены при облучении молибденовой пластинки протонами с энергией 660 МэВ на Фазотроне ЛЯП ОИЯИ. Схема разделения, состоящая из 3 связанных колонок: катионообменной, анионообменной и UTEVA Resin, детально описана в [156]. ⁸⁵Sr и ⁸⁸Y в HCl, полученные после разделения были высушены под инфракрасной лампой. Для приготовления стоков сухие образцы с радионуклидами растворяли в 1 М CH₃COOH. Раствор HNO₃ с ⁸⁸Zr выпарили под инфракрасной лампой и растворили в H₂O.

Для определения коэффициентов распределения Th(IV), Ac(III) и Ra(II) были использованы радиоактивные метки ²²⁷Th, ²²⁵Ac и ²²³Ra. ²²⁷Th и ²²³Ra были получены из радионуклидного генератора ²²⁷Ac \rightarrow ²²⁷Th \rightarrow ²²³Ra следующим способом: колонку генератора, заполненную Dowex 50×8 (h=100 мм, d=3 мм) последовательно промывали растворами 4 М и 2 М HNO₃. ²²⁵Ac в 0.25 М цитрате аммония *pH* > 3.5 был получен из генератора ²²⁹Th \rightarrow ²²⁵Ra \rightarrow ²²⁵Ac ранее описанным методом [111]. Фракции с разделенными ²²⁷Th и ²²³Ra, а также ²²⁵Ac были досуха высушены и разбавлены 1 М CCl₃COOH.

Использованные в исследованиях сорбции изотопов Ac(III) и Ra(II) в присутствии макроколичеств Th(IV) металлические пластинки тория были получены с внутренних источников ЛЯП ОИЯИ. Пластинки из природного тория содержали необходимые метки: дочерние радионуклиды ²²⁸Ac и ²²⁴Ra.

Ядерно-физические характеристики использованных радиоактивных меток указаны в Таблице 8. Таблица 8 – Ядерно-физические характеристики радионуклидов, использованных в качестве радиоактивных меток в статическом методе определения коэффициентов распределения

Радионуклид	T _{1/2}	E_{γ} , кэВ	Выход, %
⁶⁸ Ge (⁶⁸ Ga)*	270.93 д	511	180
⁸⁵ Sr	64.80 д	514	96.0
⁸⁸ Y	106.60 д	1836	99.2
225 Ac (221 Fr)*	9.92 д	218	11.4
²²³ Ra	11.43 д	269	13.9
²²⁴ Ra	3.63 д	241	4.1
²²⁷ Th	18.68 д	236	12.9
²²⁸ Ac	6.15 ч	911	25.8

* – в равновесии с дочерним радионуклидом

2.3 Методика определения коэффициентов распределения элементов с радиоактивной меткой

Для разработки любой химической схемы разделения элементов, а также радионуклидных генераторов необходимо иметь информацию о поведении элементов в данных системах. Количественным показателем сорбционного поведения элемента является коэффициент распределения (К_д), который определяется соотношением концентраций элемента в двух фазах, находящихся в равновесии.

Коэффициенты распределения целевых элементов определяются стандартным методом статической адсорбции [78]. Данный метод был адаптирован и оптимизирован на базе ЛЯП ОИЯИ. Процесс пробоподготовки следующий: к ионообменной/экстракционной смоле (m = 50 мг) добавляют 1 мл жидкой фазы в

определённых концентрациях кислот. Жидкая фаза состоит из водных растворов определённых кислот или смесей кислот и 10 мкл раствора радионуклидов– индикаторов. Приготовленные образцы оставляют до достижения равновесия, затем разделяют фазы. Радиоактивность образцов измеряют до и после разделения фаз.

Коэффициенты распределения определяют по формуле:

$$K_{\mathcal{A}} = \frac{C_{p} (\phi a 3 a 1)}{C_{p} (\phi a 3 a 2)} = \frac{A_{50 \text{ мг}} (\text{смолa})}{A_{50 \text{ мкл}} (\text{раствор})} = \frac{A_{0} - A_{eq}}{A_{eq}} * \frac{V}{m},$$
(7)

где $C_p(\varphiasa 1)$ и $C_p(\varphiasa 2)$ – равновесные концентрации элементов на смоле ($\varphiasa 1$) и в растворе ($\varphiasa 2$), $A_{50 \text{ мг}}$ (смола) – активность (Бк) радионуклида на 50 мг смолы, $A_{50 \text{ мкл}}$ (раствор) – активность (Бк) радионуклида в 50 мкл раствора. Активность радионуклида на смоле определяется разностью активностей этого радионуклида в образце (A_0) и в растворе после разделения φas (A_{eq}), умноженный на коэ $\varphi\phi$ ициент V / m. В нашем случае данный коэ $\varphi\phi$ ициент равен 20, так как для приготовления образцов мы используем 1 мл раствора и 50 мг смолы.

В основном ошибка определения коэффициентов распределения складывается из ошибки измерения активности (1-2%), а также пробоподготовки – определение массы смолы (2%) и объёма раствора (1%). Для K_{d} ниже 100 основной вклад вносит определение активности радионуклида на смоле, которая определяется путем вычитания ($A_0 - A_{eq}$). Таким образом по нашим оценкам ошибка определения K_{d} для значений $K_{d} < 10$ составляет 30%; 10 $< K_{d} < 100 - 10\%$; $K_{d} > 100 - 6\%$.

В таблице 9 указана информация о радионуклидах–индикаторах и химических системах, в которых определялись К_д в данной работе.

Таблица 9 – Химические системы, в которых определялись коэффициенты распределения К_Д

N⁰	Ион металла	Смола	Раствор		
		Dowey 50×8	0.005 M C ₂ H ₂ O ₄	HC1	
			0.1 M C ₂ H ₂ O ₄		
1	Ge(IV)		0.1 M C ₂ H ₂ O ₄	HCl	
1		Dowey 1×8	0.005 M C ₂ H ₂ O ₄		
			0.003 M C ₂ H ₂ O ₄		
			0.001 M C ₂ H ₂ O ₄		
2	Zr(IV) Y(III)	Dowex 1×8	0.005 M C.H.O.	HCl	
		Dowex 50×8	$0.005 \text{ WI } C_2 \Pi_2 O_4$		
		UTEVA Resin	C ₂ H ₂ O ₄		
	Th(IV)				
3	Ra(II)	Dowex 50×8	CCl ₃ COOH		
	Ac(III)				
Δ	Ra(II)	Dowey 50×8	ССl ₃ СООН + макроколичест		
4	Ac(III)		Th(IV)		
5	Sr(II)	Dowex 1×8	0.1 M CH ₃ COOH	CH ₃ COONH ₄	
	Y(III)	Dowex 50×8	CH ₃ COOH		

При выделении радионуклидов из облученных металлических пластинок необходимо разделять микроколичества целевого изотопа из макрокомпонента вещества мишени. В таких случаях важно иметь информацию о поведении радиоизотопов – продуктов реакции в присутствии макроколичества мишени, которое определенно влияет на сорбцию радиоизотопов (возможно изменения значений коэффициентов распределения). Такое возможно в случае, когда при пропускании раствора мишени емкость смолы не позволяет вмещать пропускаемое количество вещества и происходит насыщение смолы.

Нами были проведены эксперименты по определению К_Д радионуклидов Ac(III) и Ra(II) в присутствии макроколичеств тория. Кл Ac(III) и Ra(II) определялись в зависимости от концентрации тория и CCl₃COOH. Металлический торий массой 18 г был растворен в 10 мл 3.3 М ССІ₃СООН при нагреве 80^oC. Полученный раствор был профильтрован для удаления нерастворенных и коллоидных частиц, высушен до влажных солей и разбавлен дистиллированной водой до концентрации тория 0.64 М. Далее к навеске смолы массой 50 мг было добавлено определенное количество полученного раствора тория и CCl₃COOH в соответствующих концентрациях, чтобы объём водной фазы составлял 1 мл. Фазы приготовленных образцов лостижения разделяли после равновесия. Радиоактивность образцов измерялась до и после разделения фаз, коэффициенты распределения определялись по формуле 7.

2.4 Методы определения радиоактивности и концентрации вещества

В целях определения коэффициентов распределения, выходов ядерных реакций, радиохимических выходов и содержания примесей, а также параметров радионуклидных генераторов проводилось измерение радиоактивность образцов по γ и β⁻ излучениям целевых радионуклидов. γ–спектрометрии проводилась полупроводниковым детектором из сверхчистого германия (ORTEC) и программного обеспечения SAMAR. Мертвое время детектора менее 7%. β⁻ – спектрометрии проводилась жидкостным сцинтилляционным счетчиком (Hidex 300 SL) и программного обеспечения MikroWin 300 SL.

Спектрометрия с индуктивно-связанной плазмой была использована при определении коэффициентов распределения элементов, а также коэффициентов разделения. Для этого определялось содержание стабильных изотопов после определенного времени достаточного для распада радиоактивных примесей. Обычно это время составляло около 10 периодов полураспада критического (самого долгоживущего с наибольшей активностью) радионуклида.

МС–ИСП анализ проводился на оборудовании Х–7, ThermoScientific, США для определения содержания элементов после разделения и выделения из материала мишени. Подготовка образцов производилась согласно следующему протоколу: фракции выдерживали до распада радиоактивных изотопов. Далее образцы разбавляли диионизированной водой (сопротивление 18.2 МОм см) до 5 мл с добавлением внутреннего стандарта и 100 мкл HNO₃ (Merck, Германия) в качестве стабилизатора. В качестве внутреннего стандарта использовался 1 ppm In.

Измерение производилось со стандартными параметрами: радиочастотный генератор мощностью 1250 Вт; распылитель PolyCon; расход плазмообразующего аргона 12 л/мин; расход вспомогательного аргона 0.9 л/мин; скорость потока аргона в распылитель 0.9 л/мин; скорость потока анализируемой пробы 0.8 мл/мин.

3.1 Коэффициенты распределения

Для разработки методики получения радиоизотопов циркония и схемы радионуклидного генератора были определены коэффициенты распределения K_{π} Zr(IV) и Y(III) на анионообменной смоле Dowex 1×8 и экстракционной смоле UTEVA Resin в зависимости от концентрации C₂H₂O₄ (Рисунок 18). Концентрация C₂H₂O₄ изменялась от 0.001 M до 0.98 M.

Zr(IV) имеет высокие $K_{d} > 1000$ на анионообменной смоле во всем диапазоне концентраций $C_2H_2O_4$. Из данных очевидно, что Zr(IV) образует отрицательные комплексы $Me(C_2O_4)_4^{4-}$, $Me(C_2O_4)_3^{2-}$, а Y(III) положительные вида $Me(C_2O_4)^+$, что согласуется с механизмами, обсужденными в параграфе 1.4.

Рисунок 18 – Коэффициенты распределения Zr(IV) и Y(III) на смоле Dowex 1×8 и UTEVA Resin в зависимости от концентрации C₂H₂O₄. Коэффициенты распределения Y(III) на UTEVA Resin K_д < 1

С добавлением в систему и увеличением количества хлорид–ионов происходит подавление диссоциации щавелевой кислоты, а также непосредственно возрастание конкуренции хлорид–ионов при ионообмене.

Рисунок 19 – Коэффициенты распределения Zr(IV) на Dowex 1×8 (линия) и Dowex 50×8 (штрих); $K_{Д}$ Y(III) на Dowex 50×8 (штрих) и Dowex 1×8 ($K_{Д}$ < 1) c 0.005 M C₂H₂O₄ и в зависимости от концентрации HCl

При добавлении соляной кислоты понижается концентрация диссоциированных форм щавелевой кислоты (Рисунок 20).

Рисунок 20 – Уменьшение концентрации диссоциированных форм щавелевой кислоты с повышением концентрации соляной кислоты

Для радионуклидного генератора ⁸⁶Zr \rightarrow ⁸⁶Y на основании данных K_Д было выбрано оптимальное сочетание концентраций HCl/C₂H₂O₄ для максимального удерживания Zr(IV) и подходящего элюирования Y(III) равное 0.005 M C₂H₂O₄/0.07 M HCl. K_Д Zr(IV) и Y(III) при данной концентрации составляло соответственно ~2500 и ~1.

3.2 Облучение мишеней природного иттрия

Для получения радионуклидно чистого препарата ⁸⁶Zr проводилась оценка параметров облучения. Энергия протонов выбиралась с целью получения максимального выхода ⁸⁶Zr и минимального выхода других радионуклидных примесей. Основываясь на данных о функции возбуждения реакции Y (p, 4n) ⁸⁶Zr можно сделать вывод, что максимальное дифференциальное сечение находится в области > 50 МэВ (Рисунок 21) [130,131]. Выходы интересующих радионуклидов показаны на Рисунке 22. При энергии протонов > 50 МэВ соотношение выходов ⁸⁶Zr/⁸⁸Zr и ⁸⁶Zr и ⁸⁶Zr /⁸⁹Zr составляет ~ 100 и ~ 20.

Рисунок 21 – Теоретические дифференциальные сечения реакций Y(p, xn) ^{86,87,88,89}Zr [157]

Рисунок 22 – Выходы ^{86,87,88,89}Zr, как функция от энергии протонов, при облучении протонами природного иттрия [131]

Нами был сделан расчет выходов радиоизотопов циркония при заданных параметрах облучения иттриевой мишени: время облучения 5 мин; ток пучка 1 мкА, энергия протонов 70 МэВ, толщина мишени по пробегу 11 мм. Расчеты проводились при помощи программы FLUKA [158,159]. Результаты расчета показаны в Таблице 10. Они меньше, чем полученные нами экспериментальные данные в ~ 1.7 раз. Это связано со спецификой внутреннего пучка Фазотрона и расположением мишени. Следует заметить, что соотношение выходов изотопов к выходу ⁸⁶Zr одинаково. Выбранная методика наработки позволила получить препарат ⁸⁶Zr с предсказанной радионуклидной чистотой.

Таблица 10 – Теоретический расчет выходов ^{86,87,88,89}Zr при облучении протонами мишени природного иттрия

	Теоретический расчет				
Изотоп	Активность,	Выход,			
	МБк	МБК/мкА•ч			
⁸⁹ Zr	2.8	34			
⁸⁸ Zr	0.4	4			
⁸⁷ Zr	632.8	7600			
⁸⁶ Zr	47.2	570			

Для получения материнского радионуклида ⁸⁶Zr для радионуклидного генератора ⁸⁶Zr \rightarrow ⁸⁶Y был проведен ряд облучений природных иттриевых фольг массой от 0.4 г до 1 г. Облучение проводилось на Фазотроне ЛЯП ОИЯИ в течение 5 мин при внутреннем пучке протонов 70 МэВ и интенсивности тока 1 мкА.

Было также произведено дополнительное облучение для получения радионуклидов ^{85,87}Zr для определения фактора очистки Zr/Y. Для этих целей пластинка природного иттрия весом 0.4 г была облучена на внутреннем пучке протонов с энергией 100 МэВ. В результате облучения (4) иттриевой мишени

массой 0.4 г протонами с энергией 100 МэВ при токе пучка 1 мкА получили ⁸⁵Zr с выходом 3.6·10⁹ МБк на конец облучения.

При облучении иттриевых фольг получали выход ⁸⁶Zr на конец облучения от 600 до 970 МБк/мкА·ч. Полученный нами выход значительно превышает выход при прямой наработке ⁸⁶Y по реакции (p, n) на обогащенной мишени стронция (155 МБк/мкА·ч) [138]. При прямой наработке необходимо использовать обогащённую мишень стронция, в нашей методике мы используем природную мишень иттрия (100%). Достаточная теплопроводность и высокая температура плавления иттрия позволят в дальнейшем масштабировать этот процесс за счет увеличения протонного тока и времени облучения. Из–за примесей других стабильных изотопов стронция ⁸⁸Sr и ⁸⁷Sr по реакции (p, n) нарабатываются долгоживущие ⁸⁸Y (T_{1/2}= 106.6 сут) и ^{87m}Y (T_{1/2}= 79.8 ч), что влияет на чистоту конечного продукта.

Параметры облучения и мишени, а также выход ⁸⁶Zr для всех четырех экспериментов показан в Таблице 11.

Таблица 11 – Параметры облучения природного Y протонами и выход ⁸⁶Zr в реакции ⁸⁹Y(p, 4n). Активность и выход ⁸⁶Zr указаны на конец облучения

N⁰	Время облучения	Масса мишени	Размер мишени	Энергия протонов, МэВ	Активность ⁸⁶ Zr, МБк	Выход ⁸⁶ Zr, МБк/мкА·ч
1	5 мин	1 г	18×14×0.95 мм	70	67	800
2	5 мин	0.7 г	15×11×1 мм	70	81	970
3	5 мин	0.4 г	12×7.8×1 мм	70	50	600
4	30 сек	0.4 г	12×7.8 ×1 мм	100	_	_

При облучении мишени природного иттрия протонами 70 МэВ проходят реакции (p, 1–5n) и вместе с целевым продуктом ⁸⁶Zr производится несколько изотопов Zr, включая ⁸⁹Zr, ⁸⁸Zr, ⁸⁷Zr и ⁸⁵Zr. Для избежания примесей ^{85,87}Zr пластинки выдерживались в течении 16 ч после облучения. Радиоизотопы

циркония, измеренные через 16 ч после облучения: ⁸⁸Zr (0.7%) и ⁸⁹Zr (6–8%). Примеси ⁸⁹Zr и ⁸⁸Zr приводят к образованию стабильного иттрия и ⁸⁸Y.

Радионуклидная чистота конечного продукта (⁸⁶Y) будет определяться исключительно изотопами циркония, так как совместно полученные изотопы иттрия и стронция удалялись вместе со стабильным иттрием на этапах грубой очистки. Таким образом, примеси иттрия будут возникать в результате распада изотопов циркония. С каждым последующим элюированием процентное соотношение ⁸⁷Y и ^{87m}Y к ⁸⁶Y уменьшается. А соотношение ⁸⁸Y увеличивается от 0.02% (первое элюирование) до 0.14% (третье элюирование).

Сравнение радионуклидных примесей в процентах от активностей ⁸⁶Y с ранее опубликованными данными [138] представлено в Таблице 12. Согласно данным, представленным в таблице 12, активности примесей ^{87,87m}Y меньше значений, представленных в предыдущих исследованиях, а для ⁸⁸Y результаты сопоставимы.

Содержание стабильного ⁸⁹Ү в конечном продукте определялось МС–ИСП и составило 0.025, 0.019, 0.016 пг для первого, второго и третьего элюирования генератора соответственно. В большинстве случаев количество стабильного иттрия в конечном продукте зависит не от его накопления, а от чистоты реактивов.

Таблица 12 – Сравнение наработки 86 Y в реакции 86 Sr (p, n) 86 Y и Y (p, 4n) 86 Zr $\rightarrow {}^{86}$ Y

Параметры	86 Sr (p, n) 86 Y	$Y(p, 4n) \xrightarrow{86} Zr \to \xrightarrow{86} Y$				
Выход, МБк/мкА·ч	155	970				
Степень очистки	Не указан		$7 \cdot 10^{6}$			
Радионуклиднь	е примеси в ко	нечном продукт	се (% от радиоакт	гивности ⁸⁶ Y)		
		Элюирование	Элюирование	Элюирование		
		Ι	II	III		
⁸⁷ Y	0.2–0.75	0.006	не обнаружен	не обнаружен		
^{87m} Y	1.4–3	<0.3	не обнаружен	не обнаружен		
⁸⁸ Y	0.02-0.06	0.02	0.05	0.14		
Эффективность химического разделения	90%	≥ 99% для Y / 86 Zr ≥ 70% для 86 Zr / 86 Y (Генератор на Dowex 1×8) ≥ 95% для 86 Zr / 86 Y (Генератор на смоле ZR Resin)				
Мишень	⁸⁶ Sr	Y				
Энергия протонов, МэВ	$12 \rightarrow 8$	$70 \rightarrow 45 \pm 5$				

3.3 Выделение ⁸⁶Zr

Схема разделения была основана на полученных коэффициентах распределения (раздел 3.1) и литературных данных [160]. Новый метод разделения циркония из макроколичества иттрия был протестирован на всех облученных пластинках. Первая и четвертая пластинки использовалась для разработки этапов грубой и тонкой очистки, а также для разработки радионуклидного генератора ⁸⁶Zr→⁸⁶Y. Разработанные схемы разделения и радионуклидного генератора для три пластинки описаны ниже. Четвертая пластинка использовалась для определения фактора очистки Zr/Y.

Облученная иттриевая мишень (0.4 г) была растворена при помощи конц. HNO₃ (4 мл) и H₂O (1 мл). Полное растворение достигается за 25 минут при комнатной температуре.

Пластиковая колонка (2 мл, Bio–Rad) была заполнена анионообменной смолой Dowex 1×8 (200–400 меш, 0.25 мл), промыта 4 мл HNO₃ и H₂O для перевода в NO₃⁻ –форму. Анионообменная колонка применялась в качестве фильтра для очистки возможных коллоидных и нерастворенных частиц мишени. Раствор мишени пропустили через анионообменную колонку и связанный с ней картридж UTEVA Resin (100–150 мкм, 2 мл). Обе колонки промыли 7 мл 6 М HNO₃. Далее колонка UTEVA Resin была отсоединена от анионообменной колонки и промыта 32 мл 6 М HNO₃ для удаления макроколичества иттрия.

Для элюирования отчищенного циркония колонка UTEVA Resin была промыта 1 M HCl (6 мл, по 1 мл каждая фракция). В результате получили \geq 99% ⁸⁶Zr, максимум радиоактивности был во фракции 3 (\geq 95%) и 4 (\geq 3%). При помощи γ -спектроскопии в этих фракциях не было обнаружено никаких следов радиоизотопов иттрия.

Фракция 3 также была проанализирована на МС–ИСП, в результате концентрация иттрия составила 54 мкг/л. Фракция иттрия массой 54 нг (1 мл),

выделенная из мишени иттрия массой 0.4 г, соответствует коэффициенту разделения 0.7·10⁷.

Процедура разделения заняла около двух часов, но в случае рутинного применения процессы могут быть оптимизированы и автоматизированы. На Рисунке 23 представлена схема процесса выделения ⁸⁶Zr.

Рисунок 23 - Схема выделения Zr(IV) из облученных мишеней иттрия

Для дальнейшего использования ⁸⁶Zr для радионуклидного генератора была выбрана третья фракция с наибольшей активностью (23 ± 1 МБк) и разделена на две части. Для тонкой очистки и пре–кондиционирования ⁸⁶Zr была использована катинообменная колонка (Dowex 50×8, 200–400 меш, H⁺–форма, 0.5 мл). Часть очищенного ⁸⁶Zr с колонки UTEVA Resin в 1 М HCl (0.5 мл) была нанесена на катионообменную колонку, далее колонка была промыта 6 мл 0.1 М HCl для удаления следов иттрия. Для переноса ⁸⁶Zr с катионообменной колонки на колонку генератора использовали 2 мл раствора 0.005 М C₂H₂O₄ /0.07 М HCl.

3.4 Радионуклидный генератор 86 Zr \rightarrow 86 Y

Генераторные системы элюировали согласно теоретическому максимуму накопления дочернего изотопа, рассчитанному по формуле 6. По расчетам оптимальным для элюирования ⁸⁶Ү временем оказалось 22 часа.

На Рисунке 24 показан теоретический расчет распада изотопов циркония и накопление изотопов иттрия в зависимости от времени с моделированием предложенной стратегии элюирования (каждые 22 часа).

Рисунок 24 – Накопление изотопов иттрия и распад изотопов циркония в радионуклидном генераторе ⁸⁶Zr → ⁸⁶Y Сплошные – ⁸⁶Zr и ⁸⁶Y, точки – ⁸⁸Zr и ⁸⁸Y, штрих – ⁸⁹Zr

Были разработана 2 схемы радионуклидного генератора ⁸⁶Zr \rightarrow ⁸⁶Y. Первая схема основана на анионообменной хроматографии в среде этандиовой кислоты с добавлением хлороводородистой кислоты. Стеклянная колонка (h = 5 мм, d = 3 мм)

была заполнена 0.35 мл анионообменной смолы AG 1×8 (200–400 меш, Br[–]–форма), предварительно промытой 6 M HCl (6 мл), 2 M HCl (6 мл), 1 M HCl (6 мл), H₂O (6 мл), 0.1 M C₂H₂O₄ (6 мл) и H₂O (6 мл). После внесения 2 мл раствора 0.005 M C₂H₂O₄ / 0.07 M HCl с ⁸⁶Zr колонка дополнительно была промыта 6 мл этого же раствора.

Генератор промывали 6 мл раствора (6 фракций по 1 мл) 0.005 М С₂H₂O₄ / 0.07 М HCl раз в день (три раза) при достижении максимума активности ⁸⁶Y. Первое элюирование радионуклидного генератора обеспечила выход ⁸⁶Y \geq 80%. Выход снижался до 70% при следующих элюированиях. Первая из шести элюированных фракций содержала \geq 97% радиоактивности ⁸⁶Y. Проскок ⁸⁶Zr во всех фракциях составил менее < 1.10⁻³ %.

Радионуклидные примеси во фракциях в основном представлены активностью ⁸⁷Y (6·10⁻³ %), ⁸⁷mY (< 0.3 %), ⁸⁸Y (2·10⁻² %) от активности ⁸⁶Y. На Рисунке 25 показана схема ⁸⁶Zr \rightarrow ⁸⁶Y на основе анионообменной смолы.

Рисунок 25 – Схема радионуклидного генератора 86 Zr \rightarrow ⁸⁶Y, основанного на

AG 1×8
Вторая схема основана на твердофазной экстракционной хроматографии с использованием смолы ZR Resin. Пластиковая колонка (2 мл) была заполнена смолой ZR Resin (0.5 мл), предварительно промытой 4 мл воды. Фракция раствора циркония в 1 М HCl (0.5 мл) была напрямую загружена на колонку. Для тонкой очистки от следов иттрия колонка была промыта 1.5 мл 0.1 М HCl.

Накопленный ⁸⁶Ү элюировался 1.5 мл (3 фракции по 0.5 мл) раствора 0.1 М HCl или 0.25 М ацетата аммония (*pH* 4.5).

При данной схеме во всех 3 элюированиях средний выход ⁸⁶Y \geq 95% без заметного проскока ⁸⁶Zr ($\leq 10^{-4}$ %). 97% ⁸⁶Y обнаружено в первой фракции с 0.1 M HCl. Использование 0.25 M ацетата аммония (*pH* 4.5) в качестве элюента потенциально может быть удобным для дальнейшего радиомечения. Эта система обеспечивала выход ⁸⁶Y \geq 57 % при проскоке ⁸⁶Zr $\leq 10^{-4}$ %. На Рисунке 26 показана схема радионуклидного генератора ⁸⁶Zr \rightarrow ⁸⁶Y на основе смолы ZR Resin.

Рисунок 26 – Схема радионуклидного генератора 86 Zr \rightarrow 86 Y, основанного на смоле ZR Resin

3.5 Выводы к главе 3

1. Разработана оригинальная методика выделения ⁸⁶Zr из макроколичества облученного иттрия. Методика выделения основана на прямоточной системе, состоящей из связанных колонок: анионообменной и UTEVA Resin в азотнокислой среде. Степень очистки радиопрепарата циркония от материала мишени составляет 7.10⁶.

2. Проведен теоретический расчет выходов радиоизотопов циркония по реакциям Y (p, 1–4 n) при помощи программы FLUKA. По результатам проведенных расчетов подобрана оптимальная энергия протонов 70–45 МэВ.

3. Радиоизотопы циркония получали облучением природного иттрия протонами с энергией 70 МэВ. В результате получили количество ⁸⁶Zr 600– 970 МБк/мкА·ч на конец облучения, при этом примеси остальных радиоизотопов циркония составляли: ⁸⁸Zr – 0.7% и ⁸⁹Zr – 6–8% от активности ⁸⁶Zr.

4. Определены коэффициенты распределения пары Zr(IV) – Y(III) на ионообменных смолах Dowex 50×8 и Dowex 1×8 в растворах этандиовой и хлористоводородной кислот, а также на экстракционной смоле UTEVA Resin в растворах этандиовой кислоты.

5. По результатам определения коэффициентов распределения предложены две схемы радионуклидного генератора ⁸⁶Zr→⁸⁶Y. В основу первой схемы положена анионообменная хроматография в оксалатной/хлористоводородной среде, в основу второй схемы – твердофазная экстракционная хроматография в хлористоводородной среде. В результате обоих схем получили высокий выход ⁸⁶Y ($\geq 70\%$) с небольшой примесью ⁸⁶Zr (< 10⁻³%.), а радионуклидная чистота ⁸⁶Y составила $\geq 99.6\%$.

6. Радиопрепарат ⁸⁶Ү получен с высокой радионуклидной чистотой:

 87 Y – 0.006%; 87m Y < 0.3%; 88 Y – 0.02% (при первом элюировании), 0.05% (при втором элюировании), 0.14% (при третьем элюировании) от активности 86 Y, что

превышает радионуклидную чистоту (в случае ⁸⁸Y сравнимо) при наработке по реакции ⁸⁶Sr (p, n) ⁸⁶Y на обогащенной мишени стронция.

ГЛАВА 4. ПОЛУЧЕНИЕ ПОЗИТРОН–ИЗЛУЧАЮЩЕГО РАДИОНУКЛИДА ⁶⁸Ga 4.1 Коэффициенты распределения

Для разработки радионуклидного генератора определены коэффициенты распределения $K_{\rm d}$ Ge(IV) на анионообменной (Dowex 1×8) и катионообменной (Dowex 50×8) смолах в смеси HCl/C₂H₂O₄. Они представлены на Рисунке 27.

Рисунок 27 – Коэффициенты распределения Ge(IV) на Dowex 50×8 (штрих) и Dowex 1×8 (линия) с различными концентрациями HCl и фиксированными концентрациями C₂H₂O₄: черный – 0.1 М, красный – 0.005 М, зеленый – 0.003 М, синий – 0.001 М

В каждой из серии концентрация $C_2H_2O_4$ имела фиксированные значения, равные 0.001 M, 0.003 M, 0.005 M и 0.1 M, а концентрация HCl варьировалась от 0 до 3 M. Из Рисунка 27 видно, что $K_{\rm d}$ Ge(IV) уменьшаются с понижением концентрации $C_2H_2O_4$. При низких концентрациях HCl (до 0.25 M) $K_{\rm d}$ Ge(IV) не имеют определенной динамики, потому что Ge(IV) гидролизуется при низких концентрациях кислот.

4.2 Получение радиоизотопов германия из облученных протонами мишеней природного галлия

Для облучения галлия на Фазотроне ЛЯП ОИЯИ была приготовлена мишень Ga, инкапсулированная в ниобиевую оболочку. Облучение природного галлия массой 1 г в Nb оболочке проводилось протонами с энергией 300 МэВ, время облучения 30 мин при токе 1 мкА. В качестве индикаторов в процессе разделения были выбраны радионуклиды ⁶⁹Ge ($T_{1/2} = 39.05$ ч) и ⁶⁶Ga ($T_{1/2} = 9.49$ ч).

Были разработаны две методики выделения радиоизотопов германия. На основе коэффициентов распределения [161] была выбрана химическая схема разделения Ge(IV) и Ga(III) на основе экстракционной смолы DGA Resin и HNO₃. Часть облученной мишени галлия (0.4 г) была растворена в 3 мл 10 М HNO₃. Растворение проводилось при нагреве в течении 2 ч, порядка ~ 30% галлия осталось нерастворенным.

Раствор мишени был нанесен на смолу DGA Resin. Было собрано 3 фракции, каждая по 1 мл. Далее колонка была промыта 5 мл 10 М HNO₃ (фракции 4–8, каждая по 1 мл). Профиль элюирования Ga(III) показан на Рисунке 28. Практически весь радиогерманий сорбировалась на колонке. Степень очистки Ge/Ga 7·10⁴.

Рисунок 28 – Профиль элюирования галлия. Смола – DGA Resin, раствор – 10М HNO₃

Для дополнительной очистки к колонке DGA Resin присоединили катионообменную колонку. Ge(IV) был элюирован с экстракционной колонки DGA Resin через катионообменную 3 мл 0.1 М HNO₃ (фракция 9–11, каждая по 1 мл). В 3 фракциях было смыто 97% Ge(IV), причем основная часть (93.5%) оказалась во фракции 10. На Рисунке 29 показана вышеописанная схема выделения германия из облученной мишени галлия.

Рисунок 29 – Схема выделения радиоизотопов Ge(IV) из макроколичеств Ga(III)

Вторая методика заключается в экстрагировании радиогермания из жидкого галлия комплексообразующей кислотой, с последующей реэкстракцией посредством твердофазной экстракционной хроматографии. В стакан к части облученной галлиевой мишени (масса 0.1 г) добавили раствор 5 М CCl₃COOH (4 мл) и подогревали на водяной бане до 60^oC. В данной среде галлий не растворяется, в то время как радиогерманий комплексует с трихлоруксусной кислотой и переходит в водную фазу. Далее раствор остудили, отобрали фракцию с радиогерманием и разбавили до 2.5 М CCl₃COOH. На этапе экстракции выход радиогермания составлял > 80%, а доля галлия в растворе < 1%.

Раствор с радиогерманием наносили на колонку DGA Resin (2 мл), тем же раствором (2.5 М CCl₃COOH) промыли колонку (3 мл). Радиозотопы германия элюировали с колонки раствором 0.1 М CCl₃COOH (3 мл).

В результате двух этапов процесса отделения получили высокий выход Ge >70% без видимых следов галлия. Схема извлечения радиогермания из галлия показана на Рисунке 30.

методом твердофазной экстракционной

храмотографии

Рисунок 30 – Методика извлечения радиоизотопов Ge(IV) из макроколичеств

галлия

Ga(III)

4.3 Выбор химической схемы радионуклидного генератора ${}^{68}\text{Ge} \rightarrow {}^{68}\text{Ga}$

В целях отработки химической схемы радионуклидного генератора была использована стеклянная колонка (h = 100 мм, d = 2.9 мм), заполненная анионообменной смолой Dowex 1×8 (200-400 меш, 660 мкл). Смола в колонке была последовательно промыта 6 M HCl, 2 M HCl, 1 M HCl и H₂O. ⁶⁸Ge (Изотоп, Россия) в 0.001 М $C_2H_2O_4$ был нанесен на колонку.

На основе полученных коэффициентов распределения ⁶⁸Ge были выбраны несколько подходящих смесей кислот C₂H₂O₄ и HCl: 0.005 М C₂H₂O₄ и ряд растворов с различной концентрацией HCl – 0.025 M, 0.05 M, 0.1 M, 0.25 M, 0.3 M. Каждая из этих смесей была протестирована, также были оценены коэффициенты распределения ⁶⁸Ga в этих системах. Были собраны 6 фракций по 4 мл (24 мл).

Выход ⁶⁸Ga в системах 0.005 M C₂H₂O₄ и 0.025 – 0.25 M HCl оказался незначительным, а с раствором 0.005 M C₂H₂O₄ / 0.3 M HCl (1, Рисунок 31) достигался ~ 50%. По профилю элюирования оценочный K_д ⁶⁸Ga составлял ~ 25. Далее были протестированы 0.003 M C₂H₂O₄ / 0.25 M и 0.3 M HCl, а также 0.01 M C₂H₂O₄ / 0.3 M HCl. Во всех случаях результаты показали небольшой выход и K_д Ga > 50. Добавление в систему большей концентрации оксалат ионов (при использовании 0.01 M C₂H₂O₄) сместило ее равновесие, что повлияло на сорбцию ⁶⁸Ga. K_д ⁶⁸Ga увеличился до > 70 и по профилям было видно, что пик сместился (2 – 4, Рисунок 31). Было принято решение увеличить количество пропускаемого раствора до 40 мл (10 фракций по 4 мл), что дало возможность получить выход ⁶⁸Ga ~ 40%. Такой уровень выхода является недостаточным для генератора. Небольшое увеличение концентрации HCl (0.005 M C₂H₂O₄ / 0.33 M HCl) позволило достигнуть выхода ⁶⁸Ga ~ 60%. К_д ⁶⁸Ga в такой системе ~ 35.

Сравнение профилей элюирования ⁶⁸Ga при использовании тестовых растворов показано на Рисунке 32.

Рисунок 31 – Отработка химической схемы генератора ${}^{68}\text{Ge} \rightarrow {}^{68}\text{Ga}$ Раствор – 0.005 М С₂H₂O₄ / 0.3 М HCl, смола – Dowex 1×8 (Cl⁻ форма), V = 0.66 мл

Рисунок 32 – Оценка работы генератора ${}^{68}\text{Ge} \rightarrow {}^{68}\text{Ga}$ Смола – Dowex 1×8 (Cl⁻ форма), V = 0.66 мл

4.4 Радионуклидный генератор ${}^{68}\text{Ge} \rightarrow {}^{68}\text{Ga}$

Выбранная химическая схема (Dowex $1 \times 8 - 0.005 \text{ M C}_2\text{H}_2\text{O}_4 / 0.33 \text{ M HCl}, \text{V} = 8 \text{ мл}$) использовалась для двух типов радионуклидных генераторов, а именно, для генератора прямого элюирования и для генератора с реверсом. В обоих типах генераторов колонки изготовлялись из материала РЕЕК (Полиэфирэфиркетон) с диаметром d = 3 мм в двух размерах h = 50 мм (генератор I и III) и h = 10 мм (генератор II). Схемы генераторов прямого элюирования (I и II) и с реверсом (III) показаны на Рисунках 11 и 12. Качество работы обоих типов генераторов

оценивалось в течение 1 года, сбор элюата производился раз в день. Начальная активность материнского радионуклида была 300 кБк.

При использовании генератора I выход ⁶⁸Ga составил 75 – 80%, а проскок ⁶⁸Ge < 0.1%. Эти параметры были стабильными во всем периоде эксплуатации. Переход на колонку с меньшей длинной и уменьшение объёма смолы значительно не повлиял на характеристики генератора. Выход ⁶⁸Ga и проскок ⁶⁸Ge для генератора II не изменились.

Смола – Dowex 1×8 (Cl⁻ форма), V = 0.18 мл Раствор – 0.005 M C₂H₂O₄ / 0.33 M HCl

Генератор III с реверсом функционировал следующим образом: раствор 0.005 М С₂H₂O₄ / 0.33 М HCl (8 мл) пропускали через колонку в обратном направлении и собирали в реверсно–накопительный резервуар. После выдерживания раствора в течении 24 часов, колонку промывали им же в прямом

направлении. Элюат собирали во фракции по 1 мл (8 фракций). После элюирования ⁶⁸Ga, в обратном направлении в реверсно – накопительный резервуар вновь набирался рабочий раствор.

Использование схемы с реверсом (генератор III) предполагало уменьшение проскока ⁶⁸Ge, однако проскок ⁶⁸Ge возрос и во всем периоде был менее < 0.4%. Также в выходе ⁶⁸Ga не наблюдалось изменений, он находился в области 75 – 80%. На Рисунке 34 представлен проскок ⁶⁸Ge для 40 последовательных элюирований генератора прямого элюирования (I) и генератора с реверсом (III).

Рисунок 34 – Проскок ⁶⁸Ge для генератора с прямым элюированием (I) (сплошная) и генератора с реверсом (III) (штрих)

4.5 Выводы к главе 4

1. Для разработки радионуклидного генератора методом статической сорбции определены коэффициенты распределения Ge(IV) на ионообменных смолах Dowex 50×8 и Dowex 1×8 в растворах этандиовой и хлористоводородной кислот. Оценка сорбции Ga(III) проводилась динамическим методом.

2. На основе результатов K_{π} предложена схема радионуклидного генератора ${}^{68}\text{Ge} \rightarrow {}^{68}\text{Ga}$, в которой отделение ${}^{68}\text{Ga}$ от материнского радионуклида проходит при помощи анионообменной хроматографии в оксалатно–хлористоводородной среде. 3. Предложенную химическую систему Dowex 1×8 – 0.005 M C₂H₂O₄ / 0.33 M HCl использовали в двух генераторах с различными модами элюирования: прямой и реверсной. Выходы обоих генераторов составляли порядка 75 – 80%.

4. Для разработки методики отделения радиоизотопов германия от галлия проводилась оценка сорбции данных элементов на экстракционной смоле DGA Resin в растворах трихлоруксусной кислоты. Установлено, что в высоких концентрациях трихлоруксусной кислоты германий сорбируется на DGA Resin, а при низких есть возможность его вымывания.

5. Предложена схема выделения радиогермания из макроколичества галлия, состоящая из этапов экстракции германия в трихлоруксусной кислоте и перехвата на DGA Resin. При экстрагировании радиоизотопов германия из макроколичеств жидкой мишени галлия трихлоруксусной кислотой практически весь германий переходит в фазу раствора. На этапе экстракции выход радиогермания составлял > 80%, а доля галлия в растворе < 1%. Итоговый выход радиогермания после двух этапов извлечения составлял > 70% без видимых следов галлия.

ГЛАВА 5. ПОЛУЧЕНИЕ В– ИЗЛУЧАЮЩЕГО РАДИОНУКЛИДА ⁹⁰Ү 5.1 Коэффициенты распределения

Были проведены 2 серии измерений по определению коэффициентов распределения Sr(II) и Y(III). В первой серии K_{d} определялись между ионообменными смолами Dowex 50×8, Dowex 1×8 и уксусной кислотой, а во второй смеси уксусной кислоты и ацетата аммония. В первой серии концентрация уксусной кислоты варьировалась от 0.01 M до 17 M. А во второй концентрация уксусной кислоты была фиксированной и равнялась 0.1 M, а концентрация ацетата аммония варьировалась от 0.01 M и 7 M.

В первой серии экспериментов было показано, что оба элемента Sr(II) и Y(III) практически не сорбируются ($K_{\rm d} < 1$) на Dowex 1×8, а на Dowex 50×8 имеют значительную сорбцию ($K_{\rm d} > 10000$) во всем диапазоне концентраций CH₃COOH.

Коэффициенты распределения между Dowex 1×8 и 0.1 M CH₃COOH/CH₃COONH₄ для Sr(II) и Y(III) < 1. В случае системы Dowex 50×8 и 0.1 M CH₃COOH/CH₃COONH₄ Sr(II) имеет высокие значения K_д при низких концентрациях CH₃COONH₄, которые уменьшаются при увеличении концентрации CH₃COONH₄. В случае Y(III), также с повышением концентрации CH₃COONH₄ и Pucynke 35 показаны K_д для Sr(II) и Y(III) на Dowex 50×8.

Рисунок 35 – Коэффициенты распределения Sr(II) и Y(III) на Dowex 50×8 (200– 400 меш, NH₄⁺– форма) с 0.1 М CH₃COOH и различными концентрациями CH₃COONH₄

Для описания механизма взаимодействия катионов Sr(II) и Y(III) с ацетатом– аммония в присутствии уксусной кислоты были определены тангенсы угла наклона функции логарифма К_д в зависимости от логарифма концентрации ацетата аммония (Рисунок 36). Также для сравнения приведены тангенсы угла наклона lgK_д – lgC(HCl). Коэффициенты распределения Sr(II) и Y(III) на катионите в азотнокислой среде взяты из работы [80]. Результаты показаны в Таблице 13.

Рисунок 36 – Логарифм К_д а) Sr(II); б) Y(III), как функция логарифма концентрации кислот

Таблица 13 – Значение тангенса угла наклона логарифмической зависимости коэффициентов распределения Sr(II) и Y(III) на катионообменной смоле от логарифма концентрации кислот

Среда	Ось абсцисс (аргумент)	Значение тангенса угла наклона	
		Sr(II)	Y(III)
Dowex 50×8 – CH ₃ COONH ₄	lgC (CH ₃ COONH ₄)	- 2.3	- 4.0
AG 50×8 – HCl [80]	lgC (HCl)	- 1.8	- 2.6

Из полученных данных $lgK_{\pi} - lgC(HCl)$ для обоих катионов можно сделать вывод, что в присутствии HCl кислоты для описания системы подходит вытеснительная модель. Значение угла наклона $lgK_{\pi} - lgC(CH_3COONH_4)$ для Y(III) - 4.0 весьма примечательно. Такой угол наклона можно объяснить присутствием двухзарядного катионного комплекса $Y(CH_3COO)^{2+}$ на смоле, а модель взаимодействия описать следующим уравнением:

$$\frac{2R - SO_3^- + Y(CH_3COO)^{2+} + 2NH_4^+ + 2CH_3COO^-}{\Leftrightarrow 2R - SO_3^- + 2NH_4^+} + Y(CH_3COO)_3$$
(8)

где *R* – матрица ионообменника, *SO*₃⁻ – анион функциональной группы, под чертой обозначена фаза смолы.

5.2 Радионуклидный генератор ⁹⁰Sr→⁹⁰Y с реверсной схемой элюирования с двумя растворами

По результатам коэффициентов распределения пары Sr(II) и Y(III) была выбрана химическая схема радионуклидного генератора 90 Sr $\rightarrow ^{90}$ Y. Схема основывается на катонообменной смоле Dowex 50×8 в среде смеси CH₃COOH и CH₃COONH₄. Рабочими концентрациями раствора были выбраны 0.1 M CH₃COOH / 0.5 M CH₃COONH₄, где K_д для Sr(II) равен 32 и для Y(III) K_д < 1.

Время накопления максимального количества 90 Y, вычисленное из формулы (6) составляет 31.8 дней. Как показано на Рисунке 37 90% 90 Y накапливается за 9 дней. Для оценки работы генератора нами было решено проводить элюирование 90 Y каждые 7 дней, когда его активность достигает > 80%.

Рисунок 37 – Накопление ⁹⁰Ү (сплошная) и распад ⁹⁰Sr (штрих) в радионуклидном генераторе ⁹⁰Sr→⁹⁰Y с элюированием ⁹⁰Y каждые 9 дней

Для надежного удержания ⁹⁰Sr на колонке генератора была выбрана реверсная мода элюированию (Рисунок 38). Материнский радионуклид ⁹⁰Sr был получен из внутренних источников РХТУ им. Менделеева. 20 мл водного раствора ⁹⁰Sr поместили в реверсно–накопительный резервуар (3). Активность материнского радионуклида составляла 900 кБк. Раствор из реверсно–накопительного резервуара (3) пропустили через колонку (4), заполненную Dowex 50×8. Проскок ⁹⁰Sr при нанесении составил < 0.1%.

После нанесения ⁹⁰Sr колонка была промыта в обратном направлении из сосуда (5) 6 мл раствором 0.1 М CH₃COOH / 1 М CH₃COONH₄ и сосуда (6) 6 мл раствором 0.1 М CH₃COOH. Раствор собирали в реверсно – накопительный резервуар (3), конечная концентрация раствора составляла 12 мл 0.1 М CH₃COOH / 0.5 М CH₃COONH₄. Каждые 7 дней колонку промывали 12 мл раствора 0.1 М CH₃COOH / 0.5 М CH₃COONH₄ из реверсно – накопительного резервуара в прямом направлении. Радиопрепарат ⁹⁰Y собирали в пробирке 7. Выход ⁹⁰Y составил 70% при содержании ⁹⁰Sr < $4 \cdot 10^{-3}$ %.

Рисунок 38 – Схема радионуклидного генератора ⁹⁰Sr→⁹⁰Y на основе реверсной схемы разделения

 1 – Шприц для создания давления и разрежения, 2 – вентиль, 3 – реверсно– накопительный резервуар, 4 – колонка со смолой Dowex 50×8, 5 – раствор
0.1 М CH₃COOH / 1 М CH₃COONH₄, 6 – раствор 0.1 М CH₃COOH, 7 – пробирка
⁹⁰Y в 0.1 М CH₃COOH / 0.5 М CH₃COONH₄

5.3 Выводы к главе 5

1. В растворах уксусной кислоты и смеси уксусной кислоты и ацетата аммония была изучена сорбция стронция и иттрия на ионообменниках Dowex 50×8 и Dowex 1×8. Для качественного разделения пары 90 Sr и 90 Y была выбрана схема: катионообменная смола и 0.1 M CH₃COOH / 0.5 M CH₃COONH₄.

2. Полученные данные легли в основу схемы радионуклидного генератора ${}^{90}\text{Sr} \rightarrow {}^{90}\text{Y}$ с реверсной схемой элюирования. Генератор показал хороший выход целевого ${}^{90}\text{Y}$ (70%) с загрязнением материнским радионуклидом ${}^{90}\text{Sr} < 4 \cdot 10^{-3}$ %.

ГЛАВА 6. ПОЛУЧЕНИЕ ИЗОТОПОВ АС(III) И RA(II) ИЗ ОБЛУЧЕННОГО ТОРИЯ

6.1 Коэффициенты распределения

В исследованиях сорбционного поведения радиоизотопов Th(IV), Ac(III) и Ra(II) были проведены две серии экспериментов в системе Dowex 50×8 – CCl₃COOH: с использованием стандартной методики определения К_д, а также в присутствии макроколичества тория.

В первой серии определялись $K_{\rm A}$ Th(IV), Ac(III) и Ra(II) методом статической адсорбции на катионообменной смоле Dowex 50×8 в среде трихлоруксусной кислоты. Концентрация CCl₃COOH менялась от 0.3 M до 6 M. В каждый образец были добавлены метки ²²⁷Th (1 кБк), ²²⁵Ac (2 кБк) и ²²³Ra (1 кБк). Идентификации ²²⁵Ac производилась через γ -излучение дочернего радионуклида ²²¹Fr (218 кэВ, 11.4%) в равновесии минимум через 30 мин после разделения фаз. Результаты K_д Th(IV), Ac(III) и Ra(II) показаны на Рисунке 39. K_дAc(III) и Ra(II) во всем диапазоне концентрации трихлоруксусной кислоты довольно высокие. Видно из Рисунка 39, что для Th(IV) влияние комплексообразователя на сорбцию проявляется при концентраций выше 2M CCl₃COOH. Последующее возрастание Kд, по–видимому, связано с эффектом, обсуждаемом в главе 1.4.1.

Таким образом, в концентрациях выше 4 М CCl₃COOH есть возможность отделения изотопов Ac(III) и Ra(II) от изотопов Th(IV). Для методики выделения была выбрана рабочая концентрация 5 М CCl₃COOH, где K_д Th(IV) ~ 100, Ac(III) 2800 и Ra(II) 540.

Рисунок 39 – Коэффициенты распределения Th (IV), Ac (III) и Ra (II) на Dowex 50×8 (200–400 меш, H⁺–форма) в среде трихлоруксусной кислоты

Во второй серии, $K_{\rm A}$ микроколичества Ac(III) и Ra(II) на Dowex 50×8 определялись в присутствии макроколичеств Th в зависимости от концентрации трихлоруксусной кислоты и тория. Концентрация тория изменялась от 100% (0.64 M) до 10% (0.064 M), а концентрация CCl₃COOH от 0 до 5 М. При добавлении макроколичеств тория, происходит насыщение смолы и это влияет на поведение Ac(III) и Ra(II). Значение $K_{\rm A}$ для Ac(III) от 9 до 60, и для Ra(II) от 10 до 100 во всем диапазоне (Таблица 14). Трихлоруксусная кислота формирует менее стабильные комплексы с низкозарядными катионами, поэтому Ac(III) и Ra(II) задерживается лучше на катионообменной смоле, чем Th(IV).

Таблица 14 – Коэффициенты распределения Ac (III) и Ra (II) в присутствии макроколичеств Th(IV) на Dowex 50×8 (200–400 меш, H⁺–форма) в среде трихлоруксусной кислоты. 100% соответствует 0.64 M Th(CCl₃COO)₄

Th(CCl ₃ COO) ₄	CCl ₃ COOH	Кд		
[%]	[M]	Ac(III)	Ra(II)	
100	0	27	46	
90	0	21	45	
70	0	21	61	
50	0	21	22	
30	0	20	~10	
20	0	16	14	
10	0	9	59	
90	0.5	27	53	
70	0.5	27	57	
30	0.5	18	44	
10	0.5	23	~100	
80	1	29	34	
70	1	32	37	
30	1	21	41	
10	1	58	36	
70	2	28	34	
30	2	33	≥100	
10	2	37	45	
70	2.7	33	37	
30	2.7	38	80	
30	5	60	77	

В присутствии макроколичеств тория с увеличением концентрации CCl₃COOH К_Д для Ac(III) увеличиваются, как видно из графиков (Рисунок 40).

Картина с Ra(II) сложнее, но лимитирующим (меньшее значение К_Л) является поведение Ac(III). С точки зрения «качества» методики, увеличение сорбции Ac(III) увеличением концентрации CCl₃COOH В с широком диапазоне концентрации макрокомпонента тория является положительным фактором. CCl₃COOH Поскольку увеличение концентрации является естественным процессом при упаривании раствора мишени. Кроме этого, не требуется контроля и подбора точной концентрации как Th, так и CCl₃COOH, что важно в организации работы с большими активностями в горячей камере.

Рисунок 40 – Зависимость К_д Ас(III) и Ra(II) от концентрации трихлоруксусной кислоты в присутствии макроколичеств тория 100% соответствует 0.64 M Th(CCl₃COO)₄

На первый взгляд такое поведение Ac(III) выглядит немного странным. С другой стороны, обсуждаемые системы являются сложными: макроколичество тория, как вытеснителя, с количеством, превышающим ёмкость сорбента; высокая концентрация комплексообразующей кислоты средней силы, которая при таких концентрациях уже не полностью диссоциирует; комплексообразование исследуемых металлов с анионом кислоты (чем выше заряд катиона, тем сильнее комплексообразование); при высоких концентрациях кислоты происходит весьма

значимое замещение воды на органический растворитель, и соответственно относительное обогащение водой фазы смолы по отношению к подвижной фазе.

Сложно выделить какой-то отдельный фактор, влияющий на поведение катионов в заданной среде. Поэтому по большей мере лучше опираться на экспериментальные данные. При этом необходимо подчеркнуть, что значимая (эффективная для методики) сорбция Ac(III) и Ra(II) с K_л > 30 наблюдается при количествах тория, превышающих емкость смолы порядка десяти раз. Во многом это обусловлено более сильным комплексообразованием тория с анионом трихлоруксусной кислоты по сравнению с комплексообразованием актиния и радия. Другим важным фактором «удобной» методики является то, что при комнатной температуре концентрация ионов водорода (иона вытеснителя) практически не превышает 1 М ($K_a(CCl_3COOH) = 0.22$). Такой раствор практически не смывает с катионообменника Ac(III) и Ra(II). Концентрация водорода определяется трихлоруксусной ИЗ диссоциации кислоты $[H^+] \cong \sqrt{K_1 \cdot C (CCl_3 COOH)}$. График зависимости концентрации водорода от концентрации CCl₃COOH показан на Рисунке 41.

Рисунок 41 – Зависимость концентрации ионов водорода от концентрации трихлоруксусной кислоты, как функция $[H^+] \cong \sqrt{K_1 \cdot C \ (CCl_3COOH)}$

6.2 Облучение мишеней природного тория

Облучение пластинок природного тория (по 1 г) было проведено на Фазотроне ЛЯП ОИЯИ. Анализ пластинок при помощи МС–ИСП показал чистоту тория 98.5% с содержанием лантаноидов 0.3%, кальция и индия 0.1%, а также 1% других примесей. Были облучены 4 пластинки протонами с энергией 600 МэВ в течении 30 мин при токе 2.5 мкА. Толщина мишени по пробегу протонов 10 г/см². Так как мишени были облучены на внутреннем пучке довольно сложно предсказать геометрию взаимодействия пучка протонов с мишенью и сравнивать с литературными данными. При облучении пластинок тория производится ²²⁵Ac и ²²³Ra в количестве ~13 и ~14 МБк·ч⁻¹ на конец облучения соответственно. В Таблице 15 представлены более долгоживущие радионуклиды ($T_{1/2} \ge 1$ д). Процесс растворения мишени и разделения производился на следующий день после облучения.

Роднонулания	Т _{1/2} , д	E_{γ} , кэВ		Выход,
Гадионуклид			ИНТенсивность, 70	МБк∙ч ⁻¹
⁸⁴ Rb	32.82	882	68.9	6.8
⁸⁸ Y	106.6	1836	99.2	0.9
⁹⁵ Zr	64	757	54.38	3.8
⁹⁵ Nb	34.99	766	99.8	2.3
¹⁰³ Ru	39.24	497	91	12.2
¹¹¹ Ag	7.45	342	6.7	22.3
^{114m} In	49.51	558	4.4	14
¹¹⁵ Cd	53.46	528	27.5	26
^{117m} Sn	14	159	86.4	5.4

Таблица 15 – Выходы радионуклидов ($T_{1/2} \ge 1$ д) из 1 г мишени Th (10 г/см⁻²), облученной протонами с энергией 600 МэВ при токе 2.5 мкА в течении 30 мин

^{120m} Sb	5.76	1172	100	8.9
¹²⁴ Sb	60.2	603	97.8	3.4
¹²⁶ Sb	12.35	667	99.6	11.7
^{129m} Te	33.6	696	3	175
¹³¹ I	8.02	365	81.5	7.5
¹³⁶ Cs	13.16	819	99.7	1.7
¹³⁹ Ce	137.6	166	79.9	0.8
¹⁴⁰ Ba	12.75	537	24.39	12.5
¹⁴⁰ La	1.68	1596	95.4	28.8
²⁰⁶ Bi	6.24	803	99	8.3
²⁰⁶ Po	8.8	1032	31.7	15.7
²²³ Ra	11.43	269	13.9	14
²²⁵ Ac	9.9	218	13.4	13

Продолжение таблицы 15

6.3 Схема выделения изотопов Ac(III) и Ra(II)

На основе полученных коэффициентов распределения была разработана и протестирована радиохимическая схема выделения Ac(III) и Ra(II) из облученных мишеней природного тория. Пластинка тория (~1 г) была растворена в 5 М CCl₃COOH (10 мл) с добавлением концентрированных HF (90 мкл) и HNO₃ (100 мкл) при нагреве 80^oC. При растворении в CCl₃COOH значительная часть тория превращается в черный осадок, добавление небольшого количества анионов фтора помогает растворить его. Добавление HF (90 мкл) и HNO₃ (100 мкл) практически не влияет на дальнейший процесс разделения. Полное растворение достигнуто через 3 ч. После охлаждения раствор был профильтрован через бумажный фильтр (390 Filtrak, Германия) для удаления возможных нерастворенных частиц тория.

Химическая схема выделения Ac(III) и Ra(II) показана на Рисунке 42. Разработанная схема состоит из двух стадий: первая – ионообменная хроматография для грубой очистки от макроколичества материала мишени, вторая – экстракционная хроматография для тонкой очистки Ac(III) и Ra(II).

Рисунок 42 – Схема выделения изотопов Ac(III) и Ra(II) из облученной мишени природного тория

Полученный раствор был нанесен на катионообменную колонку через колонку с фильтром (размер пор 20 мкм), как указано на Рисунке 42 (процесс 1). Колонка была заполнена смолой Dowex 50×8 (1 мл) и предварительно промыта 5M CCl₃COOH (2 мл). В процессе нанесения раствора мишени было собрано 10 фракций по 1 мл. Далее катионообменная колонка была промыта через колонку с фильтром с 5M CCl₃COOH (2 фракции по 1 мл), как указано на Рисунке 42 (процесс 2). На катионообменной колонке задержались Ac(III) и Ra(II) и их аналоги, а также часть (1–5%) высокозарядных элементов. Около 10% тория, а также Ac(III) и Ra(II) осталось на фильтре.

Основная часть тория и других высокозарядных (4+ и выше) катионов были в первых 12 фракциях. Также в этих фракциях смывается большинство трехвалентных и мягких двухвалентных катионов.

После нанесения и промывки катионообменная колонка была связана с остальными тандемными колонками: анионообменной, DGA I и SR. Параметры всех использованных колонок указаны в Таблице 16.

Анионообменная колонка была заполнена смолой Dowex 1×8 (1 мл) и промыта 7 М HNO₃. Анионообменная колонка была использована для перехвата следов тория и остальных продуктов распада. Колонки DGA (I и II) и SR были заполнены экстракционными смолами DGA Resin (1 мл) и SR Resin (0.5 мл) соответственно. Колонка DGA Resin была использована для сорбции Ac(III) и лантаноидов (Ln(III)), а колонка SR Resin для очистки Ra(II) от Sr(II) и Ba(II). Колонки были выбраны таким образом, чтобы вся система была прямоточной с минимально возможными объёмами. Таблица 16 – Параметры колонок, использованных в выделении изотопов Ra(II) и Ac(III) из макроколичеств облученного Th(IV)

	Смола				
Колонка		Doowen	Объём,	Прекондициони	
		газмер	МЛ	рование	
	Demon 50×9	200–400	1	5 M CCl ₃ COOH,	
C	Dowex 50×6	меш	1	2 мл	
C	Нанесение раствора мишени				
	Выделение изотопов Ac(III) и Ra(II) из материала мишени				
А	Dowey 1×8	200–400	1	7 М НNO ₃ , 2 мл	
	Dowex 1^8	меш	1		
	Задержка следов Th(IV) и других высокозарядных катионов				
	DGA Resin normal,				
	N, N, N`, N`– tetra –	100–150		7 M HNO2 2 мп	
DGA I,	n –	МКМ	1	/ IVI IIINO3, 2 MJI	
II	octyldiglycolamide				
	Задержка Ас(III) и легких лантаноидов				
	Очистка Ac(III) от легких лантаноидов				
SR	4,4'(5')-di-t-	50-100			
	butylcyclohexano-	J0-100	0.5	7M HNO ₃ , 2 мл	
	18–crown–6	IVI K IVI			
	Задержка Sr(II) и Ba(II)				
	Очистка Ra(II) от Sr(II) и Ba(II)				

В некоторых случаях следы трихлоруксусной кислоты были удалены с катионообменной колонки промывкой 0.5 М HNO₃ (2 мл). Затем катионообменную колонку и 3 тандемных колонки промывали 7 М HNO₃ (10 мл), как указано на Рисунке 42 (процесс 3). ≥ 99% Ас(III) и Ra(II) смыли с катионообменной колонки. Весь оставшийся торий и высокозарядные катионы задержались на

анионообменной колонке. Ас(III) и легкие Ln(III) сорбировались на DGA I, в то время как Ra(II) прошел через все тандемные колонки. Очищенный радий собрали в 7 фракциях (каждая по 1 мл) в 7 М HNO₃. 70% Ra(II) было в максимальной фракции. Аналоги Ra(II) – Sr(II) и Ba(II) при высоких концентрациях HNO₃ сорбировались на SR Resin колонке, с помощью которой в последствии были разделены. Для разделения были использованы 0.5 М (3 мл) и 0.2 М HNO₃ (17 мл), согласно процессу 7 на Рисунке 42. В результате Sr(II) и Ba(II) были успешно разделены, эти радионуклиды впоследствии были использованы в различных исследованиях, в частности для определения K_д, а также для разработки радионуклидного генератора ¹⁴⁰Ba \rightarrow ¹⁴⁰La. Разделение Ra(II), Sr(II) и Ba(II) показано на Рисунке 43.

Рисунок 43 – Хроматограмма разделения Ra(II), Sr(II) и Ba(II)

Ac(III) и легкие лантаноиды задержались на DGA I. Далее DGA I и SR колонки были отсоединены от системы, и DGA I была соединена с колонкой DGA II. Вторая колонка была добавлена для того чтоб увеличить объём смолы, что позволяет более эффективное разделения Ac(III) от Ln(III). Обе колонки были промыты 10 M HNO₃ (20 мл) (процесс 4 на Рисунке 42). В результате было получено 20 фракций по 1 мл

с содержанием >95% Ac(III) и без следов лантаноидов. Благодаря высоким K_д [161] лантаноиды надежно удерживаются на смоле DGA Resin при высоких концентрациях HNO₃. После элюирования изотопов Ac(III), колонка промывалась 0.1 M HNO₃ (2 мл). При дальнейшей промывке колонки 0.1 M HCl (6 мл) были собраны все Ln(III) без разделения между собой, согласно процессу 6 на Рисунке 42. Идентификация Ln(III) была проведена по меткам ¹⁴⁰La (T_{1/2} = 1.68 д) и ¹³⁹Се (T_{1/2} = 137.6 д). Элюирование Ac(III) и легких лантаноидов показано на Рисунке 44.

Рисунок 44 – Хроматограмма разделения Ас(III) и лантаноидов (III)

6.4 Выводы к главе 6

1. Разработана методика получения очень ценного радионуклида для мишенной α–терапии ²²⁵Ac. Для получения большого количества ²²⁵Ac выгодно облучать массивные мишени природного тория протонами с большой энергией.

2. Для определения оптимальных условий разделения Ac(III) и Ra(II) от макроколичества тория была изучена сорбция на катионите Dowex 50×8 в среде трихлоруксусной кислоты. По результатам исследования было установлено, что при концентрации выше 4 М CCl₃COOH можно качественно выделить целевые радионуклиды.

3. Растворение тория проводится в трихлоруксусной кислоте. Так как трихлоруксуная кислота комплексообразующая, растворение сопровождается и комплексообразованием. Данный подход помогает избежать такие стадии как выпаривание раствора мишени после растворения в минеральных кислотах (HCl или HNO₃), а также перевод тория в соответствующую форму.

4. Процесс растворения мишени занял 3 ч и при увеличении массы мишени потребуется больше времени. Однако, даже в случае увеличения времени растворения это не столь принципиально при автоматизации процесса, так как в любом случае мишень приходится выдерживать для распада короткоживущих радиоизотопов актиния (²²⁶Ac и ²²⁸Ac). Процесс выделения целевых радионуклидов занял 3 ч, но он может быть ускорен при оптимизации и автоматизации методики.

5. Главным достоинством методики является возможность ее адаптации для получения максимально возможных количеств актиния из массивных мишеней тория. Это обусловлено тем, что используемые небольшие количества: трихлоруксусной кислоты (10 мл на 1 г тория) на стадии растворения; и катионнобменной смолы (1 г смолы на 1 г тория) на первой стадии разделения, которые дают возможность потенциально масштабировать мишени вплоть до 300 г. В этом случае нам понадобится 3 л трихлоруксусной кислоты и 300 г

катионнообменной смолы, что значительно ниже, чем в других существующих методиках.

ЗАКЛЮЧЕНИЕ

В заключении были сделаны следующие выводы:

1. Разработана методика получения ⁸⁶Zr по реакции (р, 4n) облучением иттрия протонами в диапазоне энергий 70–45 МэВ. Разработана методика выделения ⁸⁶Zr, основанная на последовательно связанных анионообменной и UTEVA Resin колонках в азотнокислой среде. Впервые предложены 2 схемы радионуклидного генератора ⁸⁶Zr \rightarrow ⁸⁶Y: 1) анионообменная смола – оксалатно–хлористоводородная среда; 2) экстракционная смола ZR Resin – хлористоводородная среда. Выход ⁸⁶Y составил \geq 70 % для схемы 1 и \geq 90 % для схемы 2, а проскок ⁸⁶Zr 10⁻³ – 10⁻⁴ %. Радионуклидная чистота ⁸⁶Y составила \geq 99.6 %, что превышает чистоту при прямой наработке облучением мишени обогащённого стронция по реакции ⁸⁶Sr(p, n), которая составляет 96–98 %.

2. Разработаны 2 химические схемы выделения изотопов Ge(IV) из мишеней галлия, облученных протонами на основе: 1) связанных колонок, заполненных смолами DGA Resin и катионообменной в азотнокислой среде; 2) экстракции из жидкой мишени с последующей реэкстракцией в DGA Resin в среде трихлоруксусной кислоты. Впервые предложена методика экстрагирования радиоизотопов германия из макроколичеств жидкой мишени галлия трихлоруксусной кислотой. Выход Ge(IV) в обоих случаях составил > 70 %.

3. Предложена схема радионуклидного генератора 68 Ge $\rightarrow {}^{68}$ Ga, основанная на анионообменной хроматографии в оксалатно–хлористоводородной среде с различными модами элюирования: прямой и реверсной. Выход 68 Ga составил ≥ 75 %.

4. Предложена схема радионуклидного генератора 90 Sr $\rightarrow {}^{90}$ Y, основанная на катионообменной хроматографии в среде уксусной кислоты – ацетата аммония. Выход 90 Y составил 70% с проскоком материнского радионуклида 90 Sr < 4 $\cdot 10^{-3}$ %.

5. Разработана методика выделения изотопов Ac(III) и Ra(II) – продуктов реакции глубокого расщепления – из мишени тория, облученных протонами.

Методика основана на ионообменной и твердофазной экстракционной (DGA Resin и SR Resin) хроматографиях. Методика обеспечивает высокий выход Ac(III) \geq 95% и Ra(II) ~ 99% в течение нескольких часов. Использование 1 мл катионита на 1 г тория позволяет масштабировать методику разделения мишеней тория массой до 300 г в целях увеличения активности нарабатываемого ²²⁵Ac.

Определены коэффициенты распределения Ge(IV), Zr(IV) и Y(III) на 6. катионите Dowex 50×8 и анионите Dowex 1×8 в растворах этандиовой и хлористоводородной кислот. Динамическим методом проведена оценка коэффициентов распределения Ga(III) на анионите Dowex 1×8 в растворах этандиовой и хлористоводородной кислот. Оценена сорбция Ge(IV) и Ga(III) на DGA Resin в растворах трихлоруксусной кислоты. Определены коэффициенты распределения Zr(IV) и Y(III) на экстракционной смоле UTEVA Resin в растворах этандиовой кислоты. На катионите Dowex 50×8 в среде трихлоруксусной кислоты определены коэффициенты распределения Th(IV), Ac(III) и Ra(II), а также Ac(III) и Ra(II) в присутствии макроколичеств тория. Определены коэффициенты распределения Sr(II) и Y(III) на катионите Dowex 50×8 и анионите Dowex 1×8 в растворах уксусной кислоты и смеси уксусной кислоты и ацетата аммония.

Изучение и применение трехвалентных и сопутствующих им двух- и четырехвалентных радиоизотопов имеют великолепные перспективы. Очевидно, что их значительный выбор только усиливает возможности тераностики. В самом ближайшем времени предложенные методы, по-видимому, найдут продолжение ²²⁵Ac ИЗ мишеней, получению массивных ториевых по применению ${}^{90}\text{Sr} \rightarrow {}^{90}\text{Y}$ ${}^{86}Zr \rightarrow {}^{86}Y$ ${}^{68}\text{Ge} \rightarrow {}^{68}\text{Ga}$, высокоактивных И генераторов ПО вышеобозначенным схемам для ПЭТ-диагностики и терапии соответственно. Весьма важно развивать применение реверсных и тандемных схем работы радионуклидных генераторов для других пар радионуклидов. Кроме этого, следует добавить, что очень интересно применять в технологических цепочках возможность растворения тория в трихлоруксусной кислоте. Также схему получения ⁸⁶Zr из иттриевой мишени можно расширить на выделение ПЭТрадионуклида ⁸⁹Zr из подобной мишени. Разработанные методики, ряд полученных данных о сорбции радионуклидов можно применять в МГУ им. Ломоносова, в канадском центре ускорителей частиц TRIUMF, НИЦ Курчатовский институт, Институт ядерной физики Республики Казахстан, а также в ряде других организаций, которые специализируются на разработке методик получения радионуклидов.
СПИСОК СОКРАЩЕНИЙ И УСЛОВНЫХ ОБОЗНАЧЕНИЙ

- ДР дочерний радионуклид
- Кд Коэффициент распределения
- ЛПЭ Линейная передача энергии
- ЛЯП Лаборатория ядерных проблем
- МАГАТЭ Международное агентство по атомной энергии
- МаТ мишенная альфа терапия
- МРТ мишенная радионуклидная терапия
- МР материнский радионуклид
- МС-ИСП Масс-спектрометрия с индуктивно-связанной плазмой
- ОБЭ Относительная биологическая эффективность
- ОИЯИ Объединенный институт ядерных исследований
- ОФЕКТ Однофотонная эмиссионная компьютерная томография
- ПЭТ Позитронно эмиссионная томография
- Р-Реактор
- РФП Радиофармпрепарат
- У Ускоритель
- ЭЗ Электронный захват
- SLM Supported liquid membrane

СПИСОК ЛИТЕРАТУРЫ

1. Schwaiger M. Myocardial perfusion imaging with PET // Journal of Nuclear Medicine. – 1994. – Vol. 35. – P. 693–698.

2. Smith R. et al. ¹⁸F-AV-1451 in Parkinson's Disease with and without dementia and in Dementia with Lewy Bodies // Scientific Reports. – 2018. – Vol. 8, № 1. – P. 8–13.

3. Chételat G. et al. Amyloid-PET and ¹⁸F-FDG-PET in the diagnostic investigation of Alzheimer's disease and other dementias // The Lancet Neurology. – 2020. – Vol. 19, № 11. – P. 951–962.

4. Muller C. et al. Promising Prospects for 44 Sc-/ 47 Sc-Based Theragnostics: Application of 47 Sc for Radionuclide Tumor Therapy in Mice // Journal of Nuclear Medicine. – 2014. – Vol. 55, No 10. – P. 1658–1664.

5. Herzog H. et al. Measurement of pharmacokinetics of yttrium-86 radiopharmaceuticals with PET and radiation dose calculation of analogous yttrium-90 radiotherapeutics // Journal of Nuclear Medicine. – 1993. – Vol. 34, № 12. – P. 2222–2226.

6. Rösch F., Herzog H., Qaim S.M. The beginning and development of the theranostic approach in nuclear medicine, as exemplified by the radionuclide pair ⁸⁶Y and ⁹⁰Y // Pharmaceuticals. – 2017. – Vol. 10, N_{2} 2. – P. 1–28.

7. Das T., Banerjee S. Theranostic applications of lutetium-177 in radionuclide therapy // Current Radiopharmaceutical. – 2016. – Vol. 9, № 1. – P. 94–101.

Zacherl M.J. et al. First Clinical Results for PSMA-Targeted α-Therapy Using
 ²²⁵Ac-PSMA-I&T in Advanced-mCRPC Patients // Journal of Nuclear Medicine. – 2021.
 – Vol. 62, № 5. – P. 669–674.

9. Feuerecker B. et al. Safety and Efficacy of Ac-225-PSMA-617 in mCRPC after
Failure of Lu-177-PSMA // Journal of Medical Imaging and Radiation Science. – 2019.
– Vol. 50, № 1. – P. S20–S21.

10. Zhang J., Kulkarni H.R., Baum R.P. Peptide Receptor Radionuclide Therapy Using ²²⁵Ac-DOTATOC Achieves Partial Remission in a Patient with Progressive

Neuroendocrine Liver Metastases after Repeated β-Emitter Peptide Receptor Radionuclide Therapy // Clinical Nuclear Medicine. – 2020. – Vol. 45, № 3. – P. 241–243.

11. Baimukhanova A. et al. An alternative radiochemical separation strategy for isolation of Ac and Ra isotopes from high energy proton irradiated thorium targets for further application in Targeted Alpha Therapy (TAT) // Nuclear Medicine and Biology. -2022. – Vol. 112–113. – P. 35–43.

Dadakhanov J. et al. Sorption of various elements on ion-exchange resins in acetic media // Journal of Radioanalytical Nuclear Chemistry. – 2021. – Vol. 327. – P. 1191–1199.

13. Baimukhanova A. et al. Utilization of (p, 4n) reaction for ⁸⁶Zr production with medium energy protons and development of a ⁸⁶Zr \rightarrow ⁸⁶Y radionuclide generator // Journal of Radioanalytical Nuclear Chemistry. – 2018. – Vol. 316, No 1. – P. 191–199.

14. Баймуханова А.Е. и др. Выделение изотопов германия из облученных мишеней галлия // Х Российская конференция с международным участием «Радиохимия 2022»: сборник тезисов. Москва: Изд-во ООО «Адмиралпринт», 2022. С. 72.

15. Баймуханова А.Е. и др. Выделение изотопов актиния и радия из облученной протонами ториевой мишени // IX Российская конференция с международным участием «Радиохимия 2018»: сборник тезисов. Санкт–Петербург, 2018. С. 477.

16. Радченко В.И. и др. Развитие программы по наработке и использованию терапевтических радиоизотопов в ТРИУМФ // IX Российская конференция с международным участием «Радиохимия 2018»: сборник тезисов. Санкт–Петербург, 2018. С. 514.

17. Baimukhanova A. et al. Production of positron emitter radionuclide 68 Ga via generator 68 Ge $\rightarrow {}^{68}$ Ga // 18th Radiochemical conference: booklet of abstracts. Czech Chemical Society Symposium Series, 2018. Vol. 16. N. 2. P. 248.

18. Baimukhanova A. et al. An alternative separation strategy for the isolation of Ac and Ra isotopes from thorium targets irradiated with high energy protons // The third International Symposium on Technetium and other Radiometals in Chemistry and

Medicine (Terachem 2018): book of abstracts. Bressanone: Nuclear medicine and biology, 2019. Vol. 72–73. Suppl. 1. P. S32.

19. Radchenko V. et al. Production of ²²⁵Ac and ²²⁵Ra for targeted alpha therapy via spallation on thorium: overview of radiochemical strategies and need for separation from large thorium targets // The third International Symposium on Technetium and other Radiometals in Chemistry and Medicine (Terachem 2018): book of abstracts. Bressanone: Nuclear medicine and biology, 2019. Vol. 72–73. Suppl. 1. P. S5.

20. Баймуханова А.Е. и др. Получение позитрон–излучающего радионуклида ⁶⁸Ga: радиохимическая схема радионуклидного генератора ⁶⁸Ge→⁶⁸Ga // Вестник Казахского национального университета им. аль–Фараби, серия химическая. 2018. Т. 89, № 2. С. 20–26.

21. Baimukhanova A. et al. Utilization of (p, 4n) reaction potential for medical isotopes production with medium energy protons: ⁸⁶Zr/⁸⁶Y // International conference on chemistry and material science: book of abstracts. Rome: Scientific tree conference, 2017. P. 50.

22. Баймуханова А.Е., Радченко В.И., Философов Д.В. Схема разделения ²²⁵ Ас из облученных ториевых мишеней // Международный научный форум «Ядерная наука и технологии»: сборник тезисов. Алматы: Изд–во Института ядерной физики РК, 2017. С. 401.

23. Radchenko V. et al. Behavior of Ac, Th and Ra on cation exchange resin in hydrochloric and trichloroacetic acids: Towards an alternative separation strategy for ²²⁵Ac from irradiated thorium targets // 10th International Symposium on Targeted Alpha Therapy: book of abstracts. Kanazawa, 2017. P. 88.

24. Baimukhanova A., Marinov G., Filosofov D. Distribution coefficients of ⁶⁸Ge on ion exchange resin // The XX International Scientific Conference of Young Scientists and Specialists (AYSS–2016): book of abstracts. Dubna: JINR, 2016. P. 7.

25. Mojtahedi A., Wells K. Rubidium-82 and N-13 Ammonia PET-CT imaging characteristics and differences // Journal of Nuclear Medicine. – 2012. – Vol. 53, № 1. – P. 1005.

26. Grüner J.M. et al. Brain perfusion CT compared with ¹⁵O-H₂O-PET in healthy subjects // European Journal of Nuclear Medicine and Molecular Imaging Research. – 2011. – Vol. 1, № 1. – P. 28.

27. Langen A.J. et al. Use of H_2^{15} O-PET and DCE-MRI to Measure Tumor Blood Flow // Oncologist. – 2008. – Vol. 13, Nº 6. – P. 631–644.

 Pinilla I., Rodríguez-Vigil B., Gómez-León N. Integrated ¹⁸FDG PET/CT: Utility and applications in clinical oncology // Clinical Medicine: Oncology. – 2008. – Vol. 2. – P. 181–198.

29. Kam B.L.R. et al. Lutetium-labelled peptides for therapy of neuroendocrine tumours // European Journal of Nuclear Medicine and Molecular Imaging. – 2012. – Vol. 39. – P. S103–S112.

30. Ferdinandus J. et al. Prostate-specific membrane antigen theranostics: Therapy with lutetium-177 // Current Opinion in Urology. – 2018. – Vol. 28, № 2. – P. 197–204.

31. Baum R.P. et al. Lutetium-177 PSMA Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer: Safety and Efficacy // Journal of Nuclear Medicine.
- 2016. – Vol. 57, № 7. – P. 1006–1013.

32. Sabongi J. et al. Lutetium 177-DOTA-TATE therapy for esthesioneuroblastoma:
A case report // Experimental and Therapeutic Medicine. – 2016. – Vol. 12. – P. 3078–3082.

33. Rosch F. et al. Radiation doses of yttrium-90 citrate and yttrium-90 EDTMP as determined via analogous yttrium-86 complexes and positron emission tomography // European Journal of Nuclear Medicine. – 1996. – Vol. 23. – P. 958–966.

34. Salem R. et al. Yttrium-90 Microspheres: Radiation Therapy for Unresectable
Liver Cancer // Journal of Vascular and Interventional Radiology. – 2002. – Vol. 13, №
9. – P. S223–S229.

35. Deshpande S. v et al. Yttrium-90-Labeled Monoclonal Antibody for Therapy: Labeling by a New Macrocycic Bifunctional Chelating Agent // Journal of Nuclear Medicine. – 1990. – Vol. 31. – P. 473–479.

36. Barone R. et al. Therapy using labelled somatostatin analogues: comparison of the absorbed doses with ¹¹¹In-DTPA-D-Phe¹-octreotide and yttrium-labelled DOTA-D-Phe¹-

Tyr³-octreotide // Nuclear Medicine Communication. – 2008. – Vol. 29, № 3. – P. 283–290.

37. Howell R.W. et al. Relative Biological Effectiveness of Alpha-Particle Emitters In Vivo at Low Doses // Radiation Research. – 1994. – Vol. 137, № 3. – P. 352–360.

38. Howell R.W. et al. Radiotoxicity of Gadolinium-148 and Radium-223 in Mouse Testes: Relative Biological Effectiveness of Alpha-Particle Emitters In Vivo // Radiation Research. – 1997. – Vol. 147. – P. 342–348.

39. Behr T. et al. High-Linear Energy Transfer (LET) α versus Low-LET β Emitters in Radioimmunotherapy of Solid Tumors: Therapeutic Efficacy and Dose-limiting Toxicity of ²¹³Bi- versus ⁹⁰Y-labeled CO17-1A Fab' Fragments in a Human Colonic Cancer Model // Cancer Research. – 1999. – Vol. 59, No 11. – P. 2635–2643.

40. Aurlien E. et al. Exposure of human osteosarcoma and bone marrow cells to tumour-targeted α -particles and γ -irradiation: analysis of cell survival and microdosimetry // International Journal of Radiation Biology. – 2000. – Vol. 76, No 8. – P. 1129–1141.

41. Bäck T. et al. ²¹¹At Radioimmunotherapy of Subcutaneous Human Ovarian Cancer Xenografts: Evaluation of Relative Biologic Effectiveness of an-Emitter In Vivo // Journal of Nuclear Medicine. – 2005. – Vol. 46. – P. 2061–2067.

42. Elgqvist J. et al. Myelotoxicity and RBE of ²¹¹At-conjugated monoclonal antibodies compared with ^{99m}Tc-conjugated monoclonal antibodies and ⁶⁰Co irradiation in nude mice // Journal of Nuclear Medicine. – 2005. – Vol. 46, No 3. – P. 464–471.

43. Nayak T.K. et al. Somatostatin-receptor-targeted α -emitting ²¹³Bi is therapeutically more effective than β -emitting ¹⁷⁷Lu in human pancreatic adenocarcinoma cells // Nuclear Medicine and Biology. – 2007. – Vol. 34, No 2. – P. 185–193.

44. McDevitt M.R., Sgouros G., Sofou S. Targeted and non-targeted α -particle therapies // Annual Review of Biomedical Engineering. – 2018. – Vol. 20. – P. 73–93.

45. Weineisen M. et al. ⁶⁸Ga-and ¹⁷⁷Lu-labeled PSMA I&T: Optimization of a PSMAtargeted theranostic concept and first proof-of-concept human studies // Journal of Nuclear Medicine. – 2015. – Vol. 56, № 8. – P. 1169–1176. 46. Liu F. et al. 68 Ga/ 177 Lu-labeled DOTA-TATE shows similar imaging and biodistribution in neuroendocrine tumor model // Tumor Biology. – 2017. – Vol. 39, No 6. – P. 1–9.

47. Zhao R. et al. Synthesis and Evaluation of ⁶⁸Ga- And ¹⁷⁷Lu-Labeled (R)- vs (S)-DOTAGA Prostate-Specific Membrane Antigen-Targeting Derivatives // Molecular Pharmaceutics. – 2020. – Vol. 17, № 12. – P. 4589–4602.

48. Rösch F. et al. Uptake kinetics of the somatostatin receptor ligand [⁸⁶Y]DOTA-DPhe¹-Tyr³-octreotide ([⁸⁶Y]SMT487) using positron emission tomography in nonhuman primates and calculation of radiation doses of the ⁹⁰Y-labelled analogue // European Journal of Nuclear Medicine. – 1999. – Vol. 26, Nº 4. – P. 358–366.

49. Förster G.J. et al. Preliminary data on biodistribution and dosimetry for therapy planning of somatostatin receptor positive tumours: Comparison of ⁸⁶Y-DOTATOC and ¹¹¹In-DTPA-octreotide // European Journal of Nuclear Medicine. – 2001. – Vol. 28, No 12. – P. 1743–1750.

50. Jamar F. et al. ⁸⁶Y-DOTA0-D-Phe¹-Tyr³-octreotide (SMT487) - A phase 1 clinical study: Pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion // European Journal of Nuclear Medicine and Molecular Imaging. -2003. - Vol. 30, No 4. - P. 510-518.

51. Vinjamuri S. et al. Peptide receptor radionuclide therapy with 90 Y-DOTATATE/ 90 Y-DOTATOC in patients with progressive metastatic neuroendocrine tumours: Assessment of response, survival and toxicity // British Journal of Cancer. – 2013. – Vol. 108, No 7. – P. 1440–1448.

52. Koudelková M., Vinšová H., Jedináková-Křížová V. Isotachophoretic stability determination of constants of Но and Y complexes with 1,4,7,10-tetraazadodecane-N,N',N",N"'diethylenetriaminepentaacetic acid and tetraacetic acid // Journal of Chromatography A. - 2003. - Vol. 990, № 1-2. - P. 311-316.

53. Kubíček V. et al. Gallium(III) complexes of DOTA and DOTA-Monoamide: Kinetic and thermodynamic studies // Inorganic Chemistry. – 2010. – Vol. 49, № 23. – P. 10960–10969. 54. Clarke E.T., Martell A.E. Stabilities of trivalent metal ion complexes of the tetraacetate derivatives of 12-, 13-and 14-membered tetraazamacrocycles // Inorganica Chemica Acta. – 1991. – Vol. 190. – P. 37–46.

55. Eisenwiener K.P. et al. NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [$^{67/68}$ Ga] and [111 In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors // Bioconjugate Chemistry. – 2002. – Vol. 13, No 3. – P. 530–541.

56. Notni J. et al. TRAP, a powerful and versatile framework for gallium-68 radiopharmaceuticals // Chemistry - A European Journal. – 2011. – Vol. 17, № 52. – P. 14718–14722.

57. Ma M.T. et al. New Tris(hydroxypyridinone) Bifunctional Chelators Containing Isothiocyanate Groups Provide a Versatile Platform for Rapid One-Step Labeling and PET Imaging with ⁶⁸Ga³⁺ // Bioconjugate Chemistry. – 2016. – Vol. 27, № 2. – P. 309–318.

58. Nagy G. et al. AAZTA: An Ideal Chelating Agent for the Development of ⁴⁴Sc PET Imaging Agents // Angewandte Chemie. – 2017. – Vol. 129, № 8. – P. 2150–2154.

59. Sinnes J.P. et al. Instant kit preparation of ⁶⁸Ga-radiopharmaceuticals via the hybrid chelator DATA: clinical translation of [⁶⁸Ga]Ga-DATA-TOC // European Journal of Nuclear Medicine and Molecular Imaging Research. – 2019. – Vol. 9. – P. 48.

60. Blom E., Koziorowski J. Radiolabelled somatostatin analogues for use in molecular imaging // Editors Anderson A., McAnulty T. Nova Science Publishers, 2013. P. 41–78.
61. Schollenberger C. J. Ammonium acetate as a neutral buffered standard // Journal of American chemistry society. – 1932. – Vol. 54, № 6. – P. 2568.

62. Kolling O.W., Lambert J.L. The Dissociation of Metal Acetates in Anhydrous Acetic Acid // Inorganic Chemistry. – 1964. – Vol. 3, № 2. – P. 202–205.

63. van den Winkeli P., de Cortef F., Hoste J. Anion exchange in acetic acid solutions
// Analytical Chimica Acta. – 1971. – Vol. 56. – P. 241–259.

64. Jha S.K., de Corte F., Hoste J. Cation exchange in acetic acid solutions // Analytical Chimica Acta. – 1972. – Vol. 62. – P. 163–176.

65. Eusebius L.C.T. et al. Cation Exchange Sorption of Some Metal Ions from Aqueous Ammonium Acetate Medium: Separation of Ce(IV) from Ce(III), La(III) & Other Metal Ions // Indian Journal of Chemistry. – 1977. – Vol. 15A. – P. 438–442.

66. Day R.A., Stoughton R.W. Chemistry of thorium in aqueous solutions. I. Some organic and inorganic complexes // Journal of American chemistry society. – 1950. – Vol. 72, № 12. – P. 5662–5666.

67. Коренман И.М., Заглядимова Н.В. Состав и константы нестойкости некоторых комплексных соединеней скандия // Журнал неорганической химии. – 1966. – Т. 11, № 12. – Р. 2774–2779.

68. Маров И.Н., Рябчиков Д.И. Комплексообразование циркония (IV) и гафния (IV) с хлорид-, нитрат- и оксалат-ионами // Журнал неорганической химии. – 1962.
– Т. 8, № 5. – Р. 1036–1048.

69. Stary J. Systeimatic study of the solvent extraction of metal oxinates // Analytical Chimica Acta. – 1963. – Vol. 28. – P. 132–149.

70. Курневич Г.И., Шагисултанова Г.А. Оксалаты германия (IV) // Журнал неорганической химии. – 1964. – Т. 9, № 11. – Р. 2559–2563.

71. Everest D.A. Studies in the Chemistry of Quadrivalent Germanium. Part III. Ionexchange Studies of Solutions containing Germanium and Oxalate // Journal of chemical society. – 1955. – P. 4415–4418.

72. Sekim T. Complex formation of La(III), Eu(III), Lu(III) and Am(III) with oxalate, sulphate, chloride and thiocyanate ions // Journal of inorganic and nuclear chemistry. – 1964. – Vol. 22. – P. 1463–1465.

73. Кульба Ф.Я., Бабкина Н.А., Жарков А.П. Изучение комплексообразования галлия (III) с оксалатными ионами в водном растворе в зависимости от кислотности
// Журнал неорганической химии. – 1974. – Т. 19, № 3. – Р. 674–680.

74. Waltert R. Anion exchange studies of Sc(III) and V(IV). separation of scandium, titanium and vanadium* // Journal of Inorganic and Nuclear Chemistry. – 1958. – Vol. 6.
– P. 58–62.

75. de Corte F., van der Winkel P., Speecke A. Distribution coefficients for twelve elements in oxalic acid medium on a strong anion-exchange resin // Analytical Chimica Acta. – 1968. – Vol. 42. – P. 67–77.

76. E Strelow F.W., S W Weinert C.H., Eloff C. Distribution Coefficients and Anion Exchange Behavior of Elements in Oxalic Acid-Hydrochloric Acid Mixtures // Analytical Chemisrty. – 1972. – Vol. 44, № 14. – P. 2352–2356.

77. Filosofov D. V., Loktionova N.S., Rösch F. A ⁴⁴Ti/⁴⁴Sc radionuclide generator for potential application of ⁴⁴Sc-based PET-radiopharmaceuticals // Radiochimica Acta. – 2010. – Vol. 98, № 3. – P. 149–156.

78. Marhol M. Ion exchangers in analytical chemistry. Prague: Academia, 1982. 261p.

79. Nelson F., Michelson D.C. Ion-exchange procedures. IX. Cation exchange in HBr solutions // Journal of Chromatography. – 1966. – Vol. 25. – P. 414–441.

Nelson F., Murase T., Kraus K.A. Ion exchange procedures. I. Cation exchange in concentrated HCl and HClO₄ solutions // Journal of Chromatography. – 1964. – Vol. 13. – P. 503–535.

81. Strelow F.W.E. et al. Distribution Coefficients and Cation Exchange Behavior of Elements in Hydrochloric Acid-Acetone // Analytical Chemistry. – 1971. – Vol. 43, № 7. – P. 870–875.

82. Pruszyński M. et al. Post-elution processing of ⁴⁴Ti/ ⁴⁴Sc generator-derived ⁴⁴Sc for clinical application // Applied Radiation and Isotopes. – 2010. – Vol. 68, № 9. – P. 1636–1641.

83. Dadakhanov J.A. et al. ¹⁷²Hf \rightarrow ¹⁷²Lu Radionuclide Generator Based on a Reverse-Tandem Separation Scheme // Radiochemistry. – 2018. – Vol. 60, No 4. – P. 415–426.

84. Razbash A. et al. Germanium-68 row of products // Proceedings of the 5th International Conference on Isotopes, Brussels, Belgium, April 25-29, 2005. P. 147–151. 85. Castillo A.X. et al. Production of large quantities of 90 Y by ion-exchange chromatography using an organic resin and a chelating agent // Nuclear Medicine and Biology. – 2010. – Vol. 37, No 8. – P. 935–942. 86. Barrio G., Osso J.A. Development of methodology for the preparation of ⁹⁰Sr-⁹⁰Y generators // International nuclear Atlantic Conference. Santos, Brazil, 2007.

87. Du J. et al. Simple and safe production of yttrium-90 from a new type of ⁹⁰Sr/⁹⁰Y generator // Radiochimica Acta. – 2005. – Vol. 93. – P. 111–113.

88. Poorbaygi H. et al. Preparation of ⁹⁰Y by a ⁹⁰Sr-⁹⁰Y chromatographic generator using combined columns containing Sr resin and DGA resin for radionuclide therapy // Journal of Radioanalytical and Nuclear Chemistry. – 2021. – Vol. 327, № 2. – P. 985–990.

89. Pichestapong P., Sriwiang W., Injarean U. Separation of Yttrium-90 from Strontium-90 by Extraction Chromatography Using Combined Sr Resin and RE Resin // Energy Procedia. – 2016. – Vol. 89. – P. 366–372.

90. Arino H., Kramer H.H. ¹¹³Sn/^{113m}In radioisotope generator systems // International journal of applied radiation and isotopes. – 1974. – Vol. 25. – P. 493–496.

91. Subramanian G., McAfee J.G. A radioisotope generator of 113-In // Journal of applied radiation and isotopes. – 1967. – Vol. 18. – P. 215.

92. Denni R., Adloff J.P. Mulsion d'indium 113m a l'aide de resines complexantes //
Journal of Inorganic and Nuclear Chemistry. – 1968. – Vol. 30, № 4. – P. 1112–1115.

93. Stronski I., Rybakow W.N. Anion exchange of radio-isotopes of indium, tin and antimony and the preparation of carrier-free indium-113m and antimony-125 // Chemia Analityczna. – 1959. – Vol. 4. – P. 877.

94. Boll R.A., Malkemus D., Mirzadeh S. Production of actinium-225 for alpha particle mediated radioimmunotherapy // Journal of Applied Radiation and Isotopes. – 2005. – Vol. 62, № 5. – P. 667–679.

95. Apostolidis C. et al. Production of Ac-225 from Th-229 for targeted α therapy // Analytical Chemistry. – 2005. – Vol. 77, № 19. – P. 6288–6291.

96. Zielinska B. et al. An improved method for the production of Ac-225/Bi-213 from Th-229 for targeted alpha therapy // Solvent Extraction and Ion Exchange. – 2007. – Vol. 25, № 3. – P. 339–349.

97. Tsoupko-Sitnikov V., Norseev Yu.V., Khalkin V.A. Generator of Actinium-225 // Journal of Radioanalytical and Nuclear Chemistry. – 1996. – Vol. 205, № 1. – P. 75–83.

98. Atcher R.W., Friedman A.M., Hines J.J. An Improved Generator for the Production of ²¹²Pb and ²¹²Bi from ²²⁴Ra // Applied Radiation and Isotopes. – 1988. – Vol. 39, № 4. – P. 283–286.

99. Zucchini G.L., Friedman A.M. Isotopic Generator for ²¹²Pb and ²¹²Bi // Journal of Nuclear Medicine and Biology. – 1982. – Vol. 9. – P. 83–84.

100. Henriksen G. et al. ²²³Ra for endoradiotherapeutic applications prepared from an immobilized ²²⁷Ac/ ²²⁷Th source // Radiochimica Acta. – 2001. – Vol. 89. – P. 661–666.

101. Guseva L.I., Tikhomirova G.S., Dogadkin N.N. Anion-exchange separation of radium from alkaline-earth metals and actinides in aqueous-methanol solutions of HNO₃. 227 Ac- 223 Ra generator // Radiochemistry. – 2004. – Vol. 46, No 1. – P. 58–62.

102. Abou D.S. et al. A Radium-223 microgenerator from cyclotron-produced trace Actinium-227 // Applied Radiation and Isotopes. – 2017. – Vol. 119. – P. 36–42.

103. Mokhodoeva O., Guseva L., Dogadkin N. Isolation of generator-produced ²²³Ra in 0.9-% NaCl solutions containing EDTA for direct radiotherapeutic studies // Journal of Radioanalytical and Nuclear Chemistry. – 2015. – Vol. 304, No 1. – P. 449–453.

104. ²²⁷Th/ ²²³Ra Generator. URL: www.eichrom.com/wp-content/uploads/2018/02/an-1617_th-227-ra-223-generator.pdf.

105. Ivanov P.I. et al. Evaluation of the separation and purification of 227 Th from its decay progeny by anion exchange and extraction chromatography // Applied Radiation and Isotopes. – 2017. – Vol. 124. – P. 100–105.

106. Gleason G.I. A positron cow // Applied Radiation and Isotopes. – 1960. – Vol. 8.
– P. 90–94.

107. Greene M.W., Tucker W.D. An improved gallium-68 cow // Applied Radiation and Isotopes. – 1961. – Vol. 12. – P. 62–63.

108. Yano Y., Anger H.O. A gallium-68 positron cow for medical use // Journal of Nuclear Medicine. – 1964. – Vol. 5. – P. 485–488.

109. Chakravarty R. et al. Development of an electrochemical ⁹⁰Sr-⁹⁰Y generator for separation of ⁹⁰Y suitable for targeted therapy // Journal of Nuclear Medicine and Biology.
- 2008. - Vol. 35, № 2. - P. 245-253.

110. Petrović D. et al. Novel ⁹⁰Sr-⁹⁰Y generator system based on a pertraction through supported liquid membrane in hollow fiber contactor // Chemical Engineering Research and Design. Institution of Chemical Engineers. – 2015. – Vol. 97. – P. 57–67.

111. Tsoupko-Sitnikov V., Norseev Y., Khalkin V. Generator of actinium-225 // Journal of Radioanalytical and Nuclear Chemistry. – 1996. – Vol. 205, № 1. – P. 75–83.

112. Synowiecki M.A., Perk L.R., Nijsen J.F.W. Production of novel diagnostic radionuclides in small medical cyclotrons // European Journal of Nuclear Medicine and Molecular Imaging: Radiopharmacy and Chemistry. – 2018. – Vol. 3, № 1. – P. 3.

113. Production of Long-Lived Parent Radionuclides for Generators: ⁶⁸Ge, ⁸²Sr, ⁹⁰Sr and
 ¹⁸⁸W // IAEA Radioisotopes and Radiopharmaceuticals series. Vienna: IAEA
 Radioisotopes and Radiopharmaceuticals series publications, 2010. № 2. 15 p.

114. Charged particle cross-section database for medical radioisotope production: Diagnostic radioisotopes and monitor reactions. Vienna: IAEA, 2001.

115. Grant P.M. et al. Medium-energy spallation cross sections. 1. RbBr irradiation with
800 MeV protons // Applied Radiation and Isotopes. – 1982. – Vol. 33, № 6. – P. 415–
417.

116. Pao P.J., Silvester D.J., Waters S.L. A new method for the preparation of ⁶⁸Gagenerators following proton bombardment of gallium oxide targets // Journal of Radioanalytical Chemistry. – 1981. – Vol. 64, № 1–2. – P. 267–272.

117. Naidoo C., van der Walt T.N., Raubenheimer H.G. Cyclotron production of 68 Ge with a Ga₂O target // Journal of Radioanalytical and Nuclear Chemistry. – 2002. – Vol. 253, No 2. – P. 221–225.

118. Fassbender M. et al. Simultaneous ⁶⁸Ge and ⁸⁸Zr recovery from proton irradiated Ga/Nb capsules (LA-UR #03-2319) // Journal of Radioanalytical and Nuclear Chemistry. – 2005. – Vol. 263, № 2. – P. 497–502.

119. Loc'h C. et al. A new preparation of germanium 68 // Applied Radiation and Isotopes. – 1982. – Vol. 33, № 4. – P. 267–270.

120. Fassbender M. et al. Some nuclear chemical aspects of medical generator nuclide production at the Los Alamos hot cell facility // Radiochimica Acta. – 2004. – Vol. 92, N_{2} 4–6. – P. 237–243.

121. Malyshev K.V., Smirnov V.V. Generator of gallium-68 on the base of hydrated zirconium oxide // Radiochemistry. – 1975. – Vol. 17, № 1. – P. 137–140.

122. Kopecký P., Mudrová B. ⁶⁸Ge/⁶⁸Ga generator for the production of ⁶⁸Ga in an ionic form // Applied Radiation and Isotopes. – 1974. – Vol. 25, № 6. – P. 263–268.

123. Phillips D.R. Radioisotope Production at Los Alamos National Laboratory // URL: www.mi.infn.it/conferences/phillips/Lanl.pdf.

124. Szelecsényi F. et al. Investigation of direct production of ⁶⁸Ga with low energy multiparticle accelerator // Radiochimica Acta. – 2012. – Vol. 100, № 1. – P. 5–11.

125. Sadeghi M., Mokhtari L. Rapid separation of ^{67,68}Ga from ⁶⁸Zn target using precipitation technique // Journal of Radioanalytical and Nuclear Chemistry. – 2010. – Vol. 284, № 2. – P. 471–473.

Lewis M.R. et al. Production and purification of gallium-66 for preparation of tumor-targeting radiopharmaceuticals // Nuclear Medicine and Biology. – 2002. – Vol. 29. – P. 701–706.

127. Tolmachew V., Lundqvist H. Rapid Separation of Gallium from Zinc Targets by Thermal Diffusion // Applied Radiation and Isotopes. – 1996. – Vol. 47, № 3. – P. 297–299.

128. Packard A.B., Degrado T. Cyclotron production of 68 Ga via the 68 Zn(p,n) 68 Ga reaction in aqueous solution // American Journal of Nuclear Medicine and Molecular Imaging. – 2014. – Vol. 4, No 4. – P. 303–310.

129. Pandey M.K. et al. Cyclotron production of ⁶⁸Ga in a liquid target: Effects of solution composition and irradiation parameters // Nuclear Medicine and Biology. – 2019.
– Vol. 74–75. – P. 49–55.

130. Uddin M.S. et al. Experimental studies on excitation functions of the proton-induced activation reactions on yttrium // Applied Radiation and Isotopes. – 2005. – Vol.
63, № 3. – P. 367–374.

131. Yang S.C. et al. Production cross sections of proton-induced reactions on yttrium
// Nuclear Instrumental Methods in Physics Research B. – 2017. – Vol. 398. – P. 1–8.

132. Live Chart of Nuclides // URL:

https://www.nds.iaea.org/relnsd/vcharthtml/VChartHTML.html.

133. Kettern K. et al. Radiochemical studies relevant to the production of ⁸⁶Y and ⁸⁸Y at a small-sized cyclotron // Radiochimica Acta. – 2002. – Vol. 90, № 12. – P. 845–849.

134. Kandil S.A. et al. A comparative study on the separation of radioyttrium from Srand Rb-targets via ion-exchange and solvent extraction techniques, with special reference to the production of no-carrier-added ⁸⁶Y, ⁸⁷Y and ⁸⁸Y using a cyclotron // Journal of Radioanalytical and Nuclear Chemistry. – 2009. – Vol. 279, № 3. – P. 823–832.

135. Reischl G., Rösch F., Machulla H.J. Electrochemical separation and purification of yttrium-86 // Radiochimica Acta. – 2002. – Vol. 90, № 4. – P. 225–228.

136. Yoo J. et al. Preparation of high specific activity ⁸⁶Y using a small biomedical cyclotron // Nuclear Medicine and Biology. – 2005. – Vol. 32, № 8. – P. 891–897.

137. Lukić D. et al. High efficiency production and purification of ⁸⁶Y based on electrochemical separation // Applied Radiation and Isotopes. – 2009. – Vol. 67, № 4. – P. 523–529.

138. Rösch F., Qaim S.M., Stöcklin G. Production of the positron emitting radioisotope 86 Y for nuclear medical application // Applied Radiation and Isotopes. – 1993. – Vol. 44, No 4. – P. 677–681.

139. Sadeghi M. et al. ⁸⁶Y production via ⁸⁶Sr(p,n) for PET imaging at a cyclotron // Applied Radiation and Isotopes. – 2009. – Vol. 67, № 7–8. – P. 1392–1396.

140. Uddin M.S. et al. Excitation functions of the proton induced nuclear reactions on natural zirconium // Nuclear Instrumental Methods in Physics Research B. – 2008. – Vol. 266, № 1. – P. 13–20.

141. Tárkányi F. et al. New activation cross section data on longer lived radio-nuclei produced in proton induced nuclear reaction on zirconium // Applied Radiation and Isotopes. – 2015. – Vol. 97. – P. 149–169.

142. Szelecsényi F. et al. Excitation functions of ^{nat}Zr + p nuclear processes up to 70 MeV: New measurements and compilation // Nuclear Instrumental Methods in Physics Research B. – 2015. – Vol. 343. – P. 173–191.

143. Khandaker M.U. et al. Experimental determination of proton-induced cross-sections on natural zirconium // Applied Radiation and Isotopes. -2009. - Vol. 67, No 7-8. -P. 1341-1347.

144. Rösch F., Qaim S.M., G.Stocklin. Nuclear Data Relevant to the Production of the Positron Emitting Radioisotope ⁸⁶Y via the ⁸⁶Sr(p, n)- and ^{nat}Rb(³He, xn)- Processes // Radiochimica Acta. – 1993. – Vol. 61. – P. 1–8.

145. Finn R.D. et al. Low energy cyclotron production and separation of yttrium-86 for evaluation of monoclonal antibody pharmacokinetics and dosimetry // AIP Conference Proceedings. AIP Publishing, 2008. P. 991–993.

146. Medvedev D.G., Mausner L.F., Srivastava S.C. Irradiation of strontium chloride targets at proton energies above 35 MeV to produce PET radioisotope Y-86 // Radiochimica Acta. – 2011. – Vol. 99, № 12. – P. 755–761.

147. Avila-Rodriguez M.A., Nye J.A., Nickles R.J. Production and separation of noncarrier-added ⁸⁶Y from enriched ⁸⁶Sr targets // Applied Radiation and Isotopes. – 2008. – Vol. 66, № 1. – P. 9–13.

148. Sadeghi M., Zali A., Avila M. A novel method for radiochemical separation of radioyttrium from Sr targets using precipitation technique // Radiochimica Acta. – 2010.
– Vol. 98, № 7. – P. 437–439.

149. Radchenko V. et al. Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes // Journal of Chromatography A. – 2015. – Vol. 1380. – P. 55–63.

150. Mastren T. et al. Simultaneous Separation of Actinium and Radium Isotopes from a Proton Irradiated Thorium Matrix // Scientific Reports. – 2017. – Vol. 5. – P. 2–8.

151. McAlister D.R., Horwitz E.P. Selective separation of radium and actinium from bulk thorium target material on strong acid cation exchange resin from sulfate media // Applied Radiation and Isotopes. – 2018. – Vol. 140. – P. 18–23.

152. Filosofov D. V. et al. Isolation of radionuclides from thorium targets irradiated with
300-MeV protons // Radiochemistry. – 2013. – Vol. 55, № 4. – P. 410–417.

153. Aliev R.A. et al. Isolation of Medicine-Applicable Actinium-225 from Thorium Targets Irradiated by Medium-Energy Protons // Solvent Extraction and Ion Exchange. –
2014. – Vol. 32, № 5. – P. 468–477.

154. Zhuikov B.L. et al. Production of ²²⁵Ac and ²²³Ra by irradiation of Th with accelerated protons // Radiochemistry. -2011. - Vol. 53, No 1. - P. 73-80.

155. Nagatsu K. et al. Cyclotron production of ²²⁵Ac from an electroplated ²²⁶Ra target
// European Journal of Nuclear Medicine and Molecular Imaging. – 2021. – Vol. 49, №
1. – P. 279–289.

156. Radchenko V. et al. Direct flow separation strategy, to isolate no-carrier-added
⁹⁰Nb from irradiated Mo or Zr targets // Radiochimica Acta. – 2016. – Vol. 104, № 9. –
P. 625–634.

157. TALYS-based evaluated nuclear data library. TENDL-2019 // URL: https://tendl.web.psi.ch/tendl 2019/tendl2019.html.

158. Böhlen T.T. et al. The FLUKA Code: Developments and challenges for high energy and medical applications // Nuclear Data Sheets. – 2014. – Vol. 120. – P. 211–214.

159. Khushvaktov J.H. et al. Study of the residual nuclei generation in a massive lead target irradiated with 660 MeV protons // Nuclear Instrumental Methods in Physics Research A. – 2020. – Vol. 959.

160. Marinov G.M. et al. Determination of distribution coefficients (K_d) of various radionuclides on UTEVA resin // Radiochimica Acta. – 2016. – Vol. 104, N_{2} 10. – P. 735–742.

161. Pourmand A., Dauphas N. Talanta Distribution coefficients of 60 elements on TODGA resin: Application to Ca, Lu, Hf, U and Th isotope geochemistry // Talanta. – 2010. – Vol. 81, N_{2} 3. – P. 741–753.

Гене-	Тип	Химическая схема		Вы-	Проскок
ратор	генератора	Смола	Раствор	ход	проскок
	Прямое	Dowex	0.005M C ₂ H ₂ O ₄ /	75–	<0.10/
⁶⁸ Ge→	элюирование	1×8	0.33M HCl	80%	~U.1 70.
⁶⁸ Ga	Реверсное	Dowex	0.005M C ₂ H ₂ O ₄ /	75–	<0.4%
	элюирование	1×8	0.33M HCl	80%	~0.470
⁸⁶ Zr→	Прямое	AG 1×8	0.005M C ₂ H ₂ O ₄ / 0.07M HCl	≥70%	<10 ⁻³ %
⁸⁶ Y	элюирование	ZR Resin	0.1 M HCl	≥95%	≤10 ⁻⁴ %
$^{90}\mathrm{Sr} \rightarrow$ $^{90}\mathrm{Y}$	Реверсное элюирование	Dowex 1×8	0.1M CH ₃ COOH / 0.5M CH ₃ COONH ₄	70%	<4.10-3 %

Параметры радионуклидных генераторов 68 Ge $\rightarrow {}^{68}$ Ga, 86 Zr $\rightarrow {}^{86}$ Y и 90 Sr $\rightarrow {}^{90}$ Y