ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «РОССИЙСКИЙ ХИМИКО-ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Д.И. МЕНДЕЛЕЕВА»

На правах рукописи

Дубовис Михаил Вадимович

Особенности дезоксигенирования производных 1-(1-нитроалигетерил)-1*Н*-азолов соединениями трехвалентного фосфора

Специальность – 02.00.03 Органическая химия

ДИССЕРТАЦИЯ

На соискание ученой степени кандидата химических наук

Научный руководитель: Кандидат химических наук, доцент Юдин Николай Владимирович

Москва 2021

Оглавление

1.1 Особенности дезоксигенирования ароматических и гетероароматических	ζ
НИТРОСОЕДИНЕНИЙ ПРОИЗВОДНЫМИ ТРЕХВАЛЕНТНОГО ФОСФОРА12	2
1.1.1 Дезоксигенирование о-нитроалкилбензолов 12	2
1.1.2 Образование индола и его производных	5
1.1.3 Образование карбозола и родственных соединений	0
1.1.4 Образование индазолов, бензотриазолов, бензоимидазолов, триазолов и	
ТЕТРААЗАПЕНТАЛЕНОВ	6
1.1.5 Образование антранилов и фенотиазинов	0
1.1.6 Дезоксигенирование нитронитрозо- и динитроароматических	
соединений4	3
1.2 Особенности дезоксигенирования алифатических нитросоединений	
СОЕДИНЕНИЯМИ ТРЕХВАЛЕНТНОГО ФОСФОРА	5
Глава 2. Обсуждение результатов 50	6
2.1 Получение нитросодержащих алигетероциклов	6
2.1.1 Получение гетерилзамещенных 5-нитро-1,3-диоксанов	6
2.1.2 Получение гетерилзамещенных 5-нитропергидропиримидинов и 5-	
НИТРОТЕТРАГИДРООКСАЗИНОВ	4
2.1.3 Получение гетерилзамещенных 3-нитроазетидинов	1
2.2 Дезоксигенирование нитросодержащих алигетероциклов	6
2.2.1 Дезоксигенирование гетерилзамещенных 3-нитроазетидинов	6
2.2.2 Дезоксигенирование гетерилзамещенных 5-нитро-1,3-диоксанов	5
2.2.3 Дезоксигенирование гетерилзамещенных 5-	
нитрогексагидропиримидинов и 5-нитротетрагидрооксазинов	2
2.2.4 МЕХАНИЗМ РЕАКЦИИ ДЕЗОКСИГЕНИРОВАНИЯ	3
2.3 Функционализация азолилзамещенных имидазолов 108	8
2.3.1 Получение монозамещенных 1Н-имидазолов	8
2.3.2 Особенности нитрования 1-(1-(трет-бутил)-1Н-имидазол-4-ил)-1Н-	
ПИРАЗОЛА	0

2.4 Синтез и свойства некоторых энергоемких соединений	
2.5 ФУНГИЦИДНАЯ И АНТИБАКТЕРИАЛЬНАЯ АКТИВНОСТЬ НЕКОТОРЫХ СОЕДИН	іений 119
2.5.1 Фунгицидная активность	119
2.5.2 Противомикробная активность	
2.6 ЯМР спектроскопия продуктов дезоксигенирования	124
2.6.1 2,5-Дигидро-1Н-имидазолы	
2.6.2 4,7-Дигидро-1,3,5-диоксазепины	126
2.7 Рентгеноструктурный анализ	128
2.7.1 2,5-Дигидро-1Н-имидазолы	
2.7.2 1Н-Имидазолы	
2.7.3 4,7-Дигидро-1,3,5-диоксазепины	
Глава 3. Экспериментальная часть	137
Синтез исходных соединений	
Дезоксигенирование нитросодержащих алигетероциклов	166
Список литературы	

Список сокращений и условных обозначений

Δ	Нагревание			
ЯМР	Спектроскопия ядерного магнитного резонанса			
HSQC	Гетероядерная одноквантовая корреляция			
HMBC	Гетероядерная многосвязная корреляция			
NOESY	Спектроскопия ядерного эффекта Оверхаузера			
TCX	Тонкослойная хроматография			
ИК	Инфракрасная спектроскопия			
PCA	Рентгеноструктурный анализ			
HRMS (ESI)	Масс-спектрометрия высокого разрешения с			
	ионизацией распылением в электрическом поле			
ЖХ/МС	Жидкостная хромато-масс-спектрометрия			
ΓΧ/ΜC	Газовая хромато-масс-спектрометрия			
MW	Микроволновое излучение			
one-pot	Химические реакции в одном реакторе			
in vitro	Биологические эксперименты вне живого организма			
Тпл	Температура плавления			
Т _{н. разл.}	Температура начала интенсивного разложения			
Т _{макс. разл.}	Максимальная температура разложения			
$\Delta H^{o}{}_{f}$	Стандартная энтальпия образования			
КБ	Кислородный баланс			
D	Скорость детонации			
Qv	Теплота взрывчатого превращения			
pK _a	Показатель кислотности			
hv	Квант света			
S _m 1	Радикально-нуклеофильное замещение			
Nu	Нуклеофил			
[O]	Окислитель			
ДМСО	Диметилсульфоксид			

ДМФА	Диметилформамид
ΤΓΦ	Тетрагидрофуран
Me	Метил
Et	Этил
<i>i</i> -Pr	Изопропил
<i>n-</i> Bu	Бутил
<i>t</i> -Bu	<i>трет</i> -Бутил
Ac	Ацетил
Ph	Фенил
Ar	Арил
o-DCB	орто-Дихлорбензол
TMCA	Триметилсилилацетилен
AIBN	Азобисизобутиронитрил
PTSA	пара-Толуолсульфокислота
DIAD	Диизопропилазодикарбоксилат
DDQ	1,3-Дихлоро-5,6-дициано-п-бензохинон
TEA	Триэтиламин
ДБУ	1,8-Диазабицикло[5.4.0]ундец-7-ен
Bn	Бензил
ee	Энантиомерный избыток

Введение

Актуальность темы. Нитросоединения играют огромную роль, как в повседневной жизни человека, так и в органическом синтезе. С тех пор как Митчерлих в 1837 году впервые синтезировал нитробензол, необходимость в нитроуглеводородах растет с каждым годом. Исторически нитросоединения, а в особенности ароматические нитросоединения, являются важными прекурсорами для азакрасителей и взрывчатых веществ. До сих пор их значение в изготовлении красителей и энергонасыщенных материалов не изменилось, кроме того они оказались ценными реагентами для синтеза сложных молекул. Универсальность нитросоединений в органическом синтезе BO многом обусловлена ИХ доступностью и легкостью трансформации в разнообразные функциональные группы.

Наиболее частые на сегодняшний день превращения, в которых используется нитрогруппа, представлены на рисунке 1 [1]:

Рисунок 1

Важное модификации нитросоединений место В занимает ИХ N-O восстановление. Разрыв связи является основным результатом восстановления как ароматических, так и алифатических нитросоединений, однако, для алифатического ряда также возможен разрыв связи C-N (рисунок 2):

R-H
$$\leftarrow \frac{\text{C-N разрыв}}{\text{R} = \text{Alk}}$$
 R-NO₂ $\xrightarrow{\text{N-O разрыв}}$ R-NO, R-NHOH, R-NH₂, и тд.

Существует большое количество методов и агентов для восстановления нитрогруппы [2-5]. Процедуры восстановления нитросоединений до аминов описаны достаточно подробно в различных сериях книг, таких как Organic Synthesis, например: Fe+ACOH [6], Zn+NaOH [7], Fe+HCl [8, 9], Sn+HCl [10, 11], H₂-Raney Ni [12-14], H₂-PtO₂ [15], H₂-Pd/C [16] и N₂H₄-Pd/C [17]. Помимо аминов при восстановлении как ароматических, так и алифатических нитросоединений могут получаться оксимы [18, 19], гидроксиламины [20], нитрилы [21, 22, 23] и имины [24, 25].

Одними из наиболее известных и распространенных восстановителей являются соединения фосфора (III), общей формулой Х₃Р, такие как триалкил-, триарилфосфины, а также триалкилфосфиты. Хорнер и Хоффманн [26] показали, что при взаимодействии ароматических нитросоединений с третичными наблюдается изменение цвета реакционной 2.4.6фосфинами массы. Тринитроанизол образует с трифенилфосфином пикрат метилтрифенилфосфония, а *м*-динитробензол при нагреве (70°С) в среде бензола превращается в смолу неизвестного состава. Дезоксигенирование алифатических нитросоединений производными фосфора (III) одним из первых изучал в своих работах Арбузов [27].

Степень разработанности темы. Несмотря на большое количество работ посвященных процессу восстановления нитрогруппы под действием соединений фосфора (III) в ароматическом ряду, практически отсутствует систематическая нитроалифатических информация 0 дезоксигенировании соединений. Дo настоящего времени не изучена реакционная способность алифатических нитрогетероциклов В присутствии соединений фосфора (III). Данная работа, диссертационная посвященная исследованию реакции дезоксигенирования нитроалициклических гетероциклов и свойств полученных соединений, открывает новые возможности для целенаправленной трансформации нитрогетероциклических соединений.

<u>Цель работы</u>. Изучение взаимодействия четырех- и шестичленных азолилзамещенных нитрогетероциклов с соединениями фосфора (III). В соответствии с поставленной целью решались следующие задачи:

- Разработка методов синтеза нитросодержащих алициклических гетероциклов;
- Детальное изучение взаимодействия 3-нитро-3-азолилзамещенных азетидинов с соединениями трехвалентного фосфора;
- Изучение взаимодействия 5-нитро-5-азолилзамещенных-1,3-диоксанов с соединениями трехвалентного фосфора;
- Исследование взаимодействия 5-нитро-5-азолилзамещенных гексагидропиримидинов и 5-нитро-5-азолилзамещенных тетрагидрооксазинов с соединениями трехвалентного фосфора;
- Изучение физико-химических и биологических свойств полученных соединений.

Научная новизна. Впервые, систематически исследовано взаимодействие нитросодержащих алициклических гетероциклов с соединениями трехвалентного фосфора. Обнаружено, ЧТО происходит каскадное превращение, сопровождающееся расширением цикла исходного нитросоединения. Показано, что взаимодействие нитросодержащих алигетероциклов с соединениями фосфора (III) позволяет получать новые азотсодержащие гетероциклические системы. Более того, показано, что условия взаимодействия пригодны для широкого ряда азолов: пиразола, имидазола, 1*H*-1,2,3-триазола, 1*H*-1,2,4-триазола, 1*H*-тетразола, 4-фенил-1*H*-1,2,3-триазола, 5-фенил-1*H*-тетразол, 1*H*-бензотриазола, 1*H*-1.3бензимидазол, 9Н-пурин-6-амина, 6-хлоро-9Н-пурина. Предложен механизм реакции взаимодействия нитросодержащих алициклических гетероциклов с соединениями трехвалентного фосфора.

Впервые разработан общий метод получения замещенных 1-(2,5-дигидро-1*H*-имидазол-4-ил)-1*H*-1,2,3-триазолов из 3-нитро-3-триазолилзамещенных азетидинов. Предложен новый метод синтеза 1-(1*H*-имидазол-4-ил)-1*H*-1,2,3триазолов, заключающийся в окислении 1-(2,5-дигидро-1*H*-имидазол-4-ил)-1*H*-1,2,3-триазолов.

Впервые предложен одностадийный и двухстадийный способы получения 4-азолилзамещенных-1*H*-имидазолов из 1-(1-*трет*-бутил-3-нитроазетидин-3-ил)- 4-фенил-1*H*-1,2,3-триазола и 1-(1-*трет*-бутил-2,5-дигидро-1*H*-имидазол-4-ил)-4- фенил-1*H*-1,2,3-триазола.

Впервые на примере взаимодействия 5-нитро-5-азолилзамещенных-1,3диоксанов с триэтилфосфитом разработан метод синтеза ранее недоступных 6гетерилзамещенных 4,7-дигидро-1,3,5-диоксазепинов.

Теоретическая и практическая значимость состоит в том, что были изучены закономерности взаимодействия нитроалигетероциклов с соединениями трехвалентного фосфора. В результате чего были расширены синтетические возможности нитроалигетероциклов посредством открытия новой реакции, ведущей к расширению этих циклов. Разработаны методы синтеза новых гетероциклических систем, содержащих в своей структуре наряду с фрагментом азола 4,7-дигидро-1,3,5-диоксазепиновый и 2,5-дигидро-1*Н*-имидазольный циклы. На основе реакций 3-нитро-3-азолилзамещенных азетидинов и 5-нитро-5азолилзамещенных-1,3-диоксанов, также 5-нитро-5-азолилзамещенных а гексагидропиримидинов и 5-нитро-5-азолилзамещенных тетрагидрооксазинов с триэтилфосфитом показано, что применимость реакции дезоксигенирования существенным образом зависит от строения насыщенного нитрогетероцикла. Установлено, что в ряду полученных соединений ряд 4-замещенных-1*H*имидазолов проявляет заметную фунгицидную активность по отношению к трем видам грибов – *Rhizoctonia solani*, *Venturia inaequalis*, *Bipolaris sorokiniana*.

<u>Методология и методы исследования</u>. Структуры полученных соединений были идентифицированы методами ИК спектроскопии, ЯМР спектроскопии, масс-спектрометрии, элементного анализа, а также рентгеноструктурного анализа. Целевые продукты очищены с использованием препаративной хроматографии.

9

Положения выносимые на защиту:

- 1. Метод получения 2,5-дигидро-1*Н*-имидазолов
- 2. Метод получения 4,7-дигидро-1,3,5-диоксазепинов
- 3. Одностадийный и двухстадийный методы получения 4азолилзамещенных-1*H*-имидазолов

Степень достоверности и апробация работы. Степень достоверности обеспечивается проведением экспериментальных работ И спектральных исследований синтезированных соединений на современном сертифицированном оборудовании, обеспечивающем получение надежных данных. Состав и структура соединений, обсуждаемых в диссертационной работе, подтверждены $^{1}\mathrm{H}.$ ^{13}C ^{15}N ЯМР и спектроскопии, ИК-спектроскопии, данными высокоэффективной жидкостной И газовой масс-спектрометрии, рентгеноструктурного Использованы анализа элементного анализа. И современные системы сбора и обработки научно-технической информации: электронные базы данных Reaxys (Elsevier), SciFinder (CAS), Web of Science (Thomson Reuters), а также полные тексты статей и книг.

Результаты диссертационной работы были представлены на российских и международных конференциях: 12th International Seminar «New trends in research of energetic materials» (NTREM 2009) (Пардубице, Чехия, 2009), III Международная конференция «Химия гетероциклических соединений» (Москва, конференция «Новые 2010), Π Международная направления В химии гетероциклических соединений» (Железноводск, 2011), The 25th ISHC Congress США, 2015), Барбара, Международный (Санта конгресс по химии гетероциклических соединений «КОСТ-2015» (Москва, 2015), Drug Discovery & Therapy World Congress (Бостон, США, 2016), WSOC, «Марковниковские чтения. Органическая химия: от Марковникова до наших дней» («Красновидово», 2017), The 26th ISHC Congress (Регенсбург, Германия, 2017), XXXII Международная конференция молодых ученых по химии и химической технологии «МКХТ-2018» (Москва, 2018), V Всероссийская с международным участием конференция по

органической химии (Владикавказ, 2018), 21st Tetrahedron Symposium-Online (21-24 июня, 2021).

Публикации по теме работы. По теме диссертационной работы опубликовано 10 статей в отечественных и зарубежных журналах, 1 патент и 12 тезисов докладов на российских и международных конференциях.

<u>Структура и объем работы</u>. Диссертационная работа состоит из списка сокращений и условных обозначений, введения, обзора литературы, в котором проведена систематизация данных по методам восстановления нитрогруппы как ароматических, так и алифатических соединений производными фосфора (III), обсуждения результатов, экспериментальной части, заключения и списка литературы. Материал диссертации изложен на 213 страницах машинописного текста, включает 62 таблицы, 25 рисунков и 104 схемы. Библиография насчитывает 170 ссылки.

Благодарности. Глубокую благодарность и признательность автор выражает старшему преподавателю кафедры ХТОСА РХТУ им. Д.И. Менделеева Рудакову Геннадию Федоровичу за ценные научные замечания и участие в создании диссертации. Черкаеву Георгию Всеволодовичу за регистрацию и помощь в интерпретации спектров ЯМР.

Глава 1. Литературный обзор

1.1 Особенности дезоксигенирования ароматических и гетероароматических нитросоединений производными трехвалентного фосфора

Кадоган и сотрудники считаются пионерами в исследовании реакции нитросоединений (III). Ha дезоксигенирования производными фосфора 60-70-x было опубликовано протяжении годов множество работ под руководством Кадогана, разработан ряд удобных и простых методов получения новых или ранее известных веществ [28-36] методом восстановления с использованием соединений фосфора (III).

1.1.1 Дезоксигенирование о-нитроалкилбензолов

Интерес к реакции дезоксигенирования нитроароматических соединений начал расти в конце 50-х годов XX века. Впервые о дезоксигенировании *о*-алкилзамещенных нитробензолов в среде триэтилфосфита сообщил Сандберг [24, 25]. При этом взаимодействии в качестве основного продукта образуются триэтил N-алкилфосфоримидаты **2а-е** (схема 1), (таблица 1):

Схема 1

R	Время реакции, ч	Выход 2а-е , %	Ссылка
Me (a)	4	34	[25]
Et (b)	14	44	[24]
Pr (c)	4	50	[25]
Bu (d)	4	40	[25]
Cyclohexyl (e)	4	37	[25]

Условия реакции: кипячение в среде триэтилфосфита, температура 156°С.

Таблица 1

Выход продуктов 2а-е практически не зависит от времени реакции и строения заместителя в орто-положении к нитрогруппе. Однако, помимо Nалкилфосфоримидатов 2a-e. каждом случае дезоксигенирования В 0нитроалкилбензолов 1а-е был обнаружен ряд побочных соединений. 2-Метилиндолин (**3c**, 7%), *о*-пропиланилин (**4**, 6%) и *о*-аллиланилин (**5**, 6%) были обнаружены при восстановлении о-пропилнитробензола (1c); 2-этилиндолин (3d, 9%), 1,2,3,4-тетрагидро-2-метилхинолин (6, 2%) и изомеры бутиланилина (около 5%) при восстановлении о-бутилнитробензола (1d). При дезоксигенировании оциклогексилнитробензола (1е) получилась смесь, содержащая цис- и транс-1,2,3,4,4а,9а-гексагидрокарбазолы (7, 16%) (схема 2):

Такие результаты указывают на непосредственное участие нитрена в процессе дезоксигенирования. Еще одним доказательством образования нитрена при восстановлении нитросоединений в присутствии соединений фосфора (III) является взаимодействие оптически активного (+)-(S)-2-нитро-1-(2-метилбутил)бензола (8) с триэтилфосфитом [37] (схема 3):

Схема 3

Реакцию проводили в среде триэтилфосфита. Продуктом такого взаимодействия является 2-этил-2-метилиндолин (9) с выходом 25%.

Предположительно происходит непосредственная атака синглетного нитрена по связи С-Н во второе положение цепи через интермедиат **10** (схема 4):

Схема 4

Авторы предполагают, что реакция проходит аналогично пиролизу (+)-(S)-2-азидо-1-(2-метилбутил)бензола [38].

В работе [39] описан способ восстановления нитробензолов с различными заместителями в ароматическом цикле до анилинов. В качестве восстановителя был использован диэтилхлорфосфит (схема 5):

Схема 5

13	T ^[a] , °C	Время ^[b] , ч	Выход 15, (%) ^[с]
H ₃ C-V-NO ₂	20; 50	4; 10	>95
	20; 50	4; 6	>95
	20; 50	24; 10	>95
	20; 50	96; 10	20
	20; 50	5; 6	>95

Таблица 2

Таблица	2 (Продолжение)

13	Tª, cC	Bремя ^b , ч	Выход 15, %
MeO-NO2	20; 50	8; 10	20

[а] Температура указана на первой и второй стадиях

[b] Время на первой и второй стадиях

[с] Выход определен с помощью ¹Н-ЯМР

В процессе дезоксигенирования такие заместители, как хлор, нитрил, альдегид или кетон не затрагиваются. Была оценена эффективность и других соединений трехвалентного фосфора в дополнение к диэтилхлорфосфиту. Например, когда триметилфосфит добавляли в аналогичных условиях, образование продукта не наблюдалось. Никакой реакции не происходило ни с PCl₃, ни с бис-(диизопропиламино)хлорфосфитом, ни с триэтилфосфитом. Диэтилхлорфосфит представляет собой «бифильный» реагент, то есть гибрид триэтилфосфита и трихлорида фосфора, который может быть как электрофилом, так и нуклеофилом. Это отображено в предлагаемом механизме реакции (схема 6):

С помощью ¹H-ЯМР, было установлено, что на первой стадии происходит образование соли $[R_3N-P(OR)_2]^+Cl^-(16)$, сформированной из амина и диэтилхлорфосфита. Эта соль действует как электрофил для восстановления нитро до нитрозосоединения, возможно, через посредство четырехчленного цикла 18. распространенного В химии фосфора. Вторая стадия дезоксигенирования требует нуклеофильного фосфорного реагента, который атакует кислород нитрозогруппы соединения 19 с вероятным образованием промежуточного продукта 20. Подтверждающим доказательством этой стадии являетсятот факт, что бедный электронами кислород быстро реагировал (в течение 40 минут) с образованием фосфорамидата 23. Возможность образования нитренов из промежуточного соденинения 20 маловероятна, так как не наблюдалось никакой восстановительной циклизации. Промежуточное соединение 20, по всей видимости, впоследствии реагирует с дополнительной молекулой 16, которая ведет себя как электрофил, с образованием 21. Выделенный продукт 23, описан ³¹Р-ЯМР, наиболее вероятно получен гидролизом промежуточного соединения 22. Образование второго фосфатного эфира 24 происходит параллельно. Когда реакцию 4 проводили С эквивалентами ClP(OEt)₂, продукт 24 выделяли в следовых количествах.

Интересной особенностью взаимодействия *о*-нитроалкилбензолов с соединениями фосфора (III) является расширение ароматического цикла. Кадоган обнаружил, что при дезоксигенировании *о*-этилнитробензола (**1b**) образуется 2этил-3*H*-азепин-7-ил фосфонат (**25**) с выходом 12%, этилен (**26**) с выходом 50%, а также N-(*о*-этилфенил)фосфорамидат (**27**) с выходом 18% [32] (схема 7):

Схема 7

Нитробензол (29) и *о*-нитротолуол (1а) в этих условиях дают аналогичные продукты. Такие результаты указывают на двойную роль триэтилфосфита как восстанавливающего агента и как нуклеофила, ответственного за расширение

цикла, вероятно через квазифосфониевый интермедиат 28, который подвергается элиминированию этилена.

При дезоксигенировании нитробензола (29) диэтилметилфосфонитом в среде диэтиламина [36] основным продуктом реакции является 2-диэтиламино-3*H*-азепин (30) с выходом 83% (схема 8):

Схема 8

Похожее превращение описано в работе [40], где в качестве восстанавливающего агента был использован трибутилфосфит, а метанол в качестве растворителя (схема 9):

Схема 9

 $\begin{array}{l} \mathsf{R}_1 = \mathsf{H}, \, \mathsf{R}_2 = t\text{-}\mathsf{Bu}, \, \mathsf{R}_3 = \mathsf{H}, \, (\mathbf{a}), \, 74\% \\ \mathsf{R}_1 = \mathsf{H}, \, \mathsf{R}_2 = \mathsf{H}, \, \mathsf{R}_3 = t\text{-}\mathsf{Bu}, \, (\mathbf{b}), \, 58\% \\ \mathsf{R}_1 = t\text{-}\mathsf{Bu}, \, \mathsf{R}_2 = \mathsf{H}, \, \mathsf{R}_3 = t\text{-}\mathsf{Bu}, \, (\mathbf{c}), \, 46\% \end{array}$

Реакцию проводили в запаянной трубке при высокой температуре в течение 24 часов. Азепины **32а-с** оказались основными продуктами. Авторы отмечают, что выход целевого азепина зависит от заместителя в *орто*-положении нитрогруппы.

Сандберг в работе [41] подробно исследовал возможность фотохимического дезоксигенирования ароматических нитросоединений триэтилфосфитом (схема 10), (таблица 3):

Таблица 3

Соединение	R ₁	R_2	R ₃	R ₄	R ₅
33a	Н	Н	Н	Н	Н
33b	CH ₃	Н	Н	Н	Н
33c	Н	Н	CH ₃	Н	Н
33d	CH ₃	CH ₃	Н	Н	Н
33e	CH ₃	Н	CH ₃	Н	Н
33f	CH ₃	Н	Н	CH ₃	Н
33g	Н	CH ₃	CH ₃	Н	Н
33h	CH ₃	Н	CH ₃	Н	CH ₃
33i	CH ₃	Cl	Н	Н	Н
33j	OCH ₃	Н	Н	Н	Н
33k	Н	Н	OCH ₃	Н	Н
331	CO ₂ OCH ₃	Н	Н	Н	Н
33m	Н	CO ₂ OCH ₃	Н	Н	Н
33n	Н	Н	CO ₂ OCH ₃	Н	Н
330	CN	Н	Н	Н	Н
33p	Н	Н	CN	Н	Н
33q	CH ₂ CH ₂ CH ₃	Н	Н	Н	Н

В независимости от заместителей основными продуктами реакции оказались триэтил-N-арилфосфорамидаты **37а-р**.

18

Соеди	Конверсия,	Выход 34, %	Выход 35, %	Выход 37 , %	Выход 38 , %	Выход 39 , %
нение	%	(метод А)	(метод А)	(метод В или С)	(метод В)	(метод В или С)
33 a	73	1	0	<1 (B)	0	-
33b	52	23	24	5 (B)	7	13 (B)
33c	65	<3	0	3 (B)	0	12 (B)
33d	72	13	38	3 (B)	22	15 (B)
33e	76	53	16	27 (B)	5	7 (B)
33f	67	40	6	18 (B)	4	8 (B)
33g	52	<3	0	-	-	-
33h	67	>9	6	14 (B)	8	8 (B)
33i	60	-	-	-	9	11 (B)
33j	59	-	-	26 (B), 26 (C)	-	13 (B)
33k	72	40	0	19 (C)	-	13 (C)
331	43	-	-	40 (C)	-	9 (C)
33m	33	-	-	4 (C)	-	Следы (С)
33n	42	_	_	31 (C)	_	-
330	48	_	_	22 (C)	_	_
33p	54	-	-	28 (C)	-	11 (C)

Таблица 4

Условия реакции: 0.1 моль нитросоединения, 1 моль триэтилфосфита, ртутная лампа 200 Вт, 12 часов, температура 30±5°С.

Для анализа продуктов реакции авторы использовали три различных процедуры выделения. Метод А основан на фракционной перегонке и анализе фракций с помощью ЯМР спектроскопии. В таблице 4 указано количество восстановленных нитросоединений и выходы продуктов. Фракции с более высокой температурой кипения, как правило состояли из смеси триэтил-Nарилфосфоримидатов 34а-р и из о-метилнитробензолов, а также из замещенных ацетимидилпиридинов 35, при восстановлении которых боргидридом натрия образуются анилины 36b,е. Прямой кислотный гидролиз смеси после дезоксигенирования, удаления триэтилфосфата непрореагировавшего И 33 нитроароматического соединения перегонкой, оказался ценным альтернативным методом обработки реакционной смеси (метод В). Выход фосфорамидатов 37, замещенных 2-ацетилпиридинов 38 и анилинов 39, полученных этим методом, указан в таблице 4. Выходы фосфорамидатов 37 ниже, чем выходы фосфоримидатов 34, выделенных прямой перегонкой. Вероятно, это связано с потерями на гидролиз и последующую очистку. Третья процедура выделения (метод С) включала удаление триэтилфосфита и триэтилфосфата

вакуумной перегонкой с последующей хроматографией остатка на кремниевой кислоте, при этом триэтил-N-арилфосфоримидаты **34а-р** переходят в диэтил-N-арилфосфорамидаты **37а-р** (таблица 4).

Доказательством образования арилнитренов в процессе фотохимического дезоксигенирования может служить получение азепина, так растворы соединений **33а-с,h** в триэтилфосфите, содержащие диэтиламин, облучали в указанных выше условиях. В каждом случае были обнаружены 2-диэтиламино-3*H*-азепины (**40а-с**, **h**) (схема 11):

Схема 11

40a 23%; b 7%; c 18%; h 3%

На примере замещенных N-пренил-2-нитроанилинов, а также замещенных S-пренил-2-нитротиофенолов **41**, была изучена возможность их трансформации в соответствующие 1,2,3,4-тетрагидрохиноксалины и 3,4-дигидро-2*H*-1,4-бензотиазины **42** в условиях реакции дезоксигенирования [42, 43] (схема 12), (таблица 5):

Схема 12

X	R	Время, ч	Метод	Выход 42,%	Выход 43,%
N	CO ₂ Me	2	A	60	6
N	CO ₂ Bn	2	А	59	4
N	CO ₂ <i>t</i> -Bu	2	A	55	-
N	Ph	12	A	57	<2
N	CO ₂ Me	0.58	В	60	4

Таблица 5

X	R	Время, ч	Метод	Выход 42 ,%	Выход 43 ,%
N	CO ₂ Bn	0.58	В	58	4
N	CO ₂ <i>t</i> -Bu	0.58	В	36	-
N	Ph	0.5	В	56	<2
N	CO ₂ Me	0.58	С	70	-
N	CO ₂ Bn	0.58	С	67	-
N	CO ₂ <i>t</i> -Bu	0.58	С	36	-
N	Ph	0.58	С	60	-
S	-	5	А	68	5
S	-	0.5	В	65	8
S	-	0.5	С	74	-

Таблица 5 (Продолжение)

Условия реакции. Метод А: P(OEt)₃ (6 экв.), кипячение 2-12ч. Метод В: P(OEt)₃ (6 экв.), 200W, 200°С. Метод С: P(OEt)₃ (6 экв.), толуол, 200W, 200°С.

Выход целевых продуктов **42** практически не зависит от заместителя у азота, а также от условий проведения реакции. Как при кипячении в среде триэтилфосфита, так и при микроволновом облучении соотношение продуктов **42/43** оставалось неизменным. При использовании толуола в качестве растворителя удалось сместить направление реакции в сторону продуктов **42**. При использовании монозамещенного *о*-нитроанилина состав продуктов изменился (схема 13):

Схема 13

R	Время, ч	Метод	Выход 45 ,%	Выход 46 ,%
Н	12	А	30	40
Н	0.58	В	40	23
Me	0.58	В	46	21

Таблица 6

Таблица 6 (Продолжение)

R	Время, ч	Метод	Выход 45 ,%	Выход 46 ,%
OMe	0.58	В	45	17
Cl	0.58	В	26	4

Условия реакции. Метод А: P(OEt)₃ (6 экв.), кипячение 2-12ч. Метод В: P(OEt)₃ (6 экв.), 200W, 200°С.

Взаимодействие незащищенных N-пренил-2-нитроанилинов 44 приводит исключительно к моно-, либо ди- N-этилированным продуктам 45 и 46 соответственно.

Авторы предполагают, что для данной реакции возможно два механизма: внутримолекулярная нитрозо-еновая циклизация и механизм с образованием нитрена. В случае реализации нитрозо-енового механизма реакция защищенного N-пренил-2-нитроанилина **41** с триэтилфосфитом начинается с восстановления нитрогруппы. Нитрозоинтермедиат **47** взаимодействует с двойной связью с образованием циклического гидроксиламина **48**. Дальнейшее восстановление триэтилфосфитом приводит к циклическому амину **42**. В случае нитренового механизма целевое соединение образуется через стадию образования бирадикала **50** (схема 14):

Схема 14

При замене аминогруппы в 2-нитроанилине на насыщенный гетероцикл, например пиперидин или морфолин, взаимодействие с триэтилфосфитом приводит к имидазолам **53**, **55**, **57**, **59** [44] (схема 15):

Схема 15

Несмотря на синтетические перспективы, метод не получил дальнейшего развития.

Другим направлением применения реакции дезоксигенирования ароматических нитросоединений является возможность получения несимметричнозамещенных диарилалкиламинов **62**. Реакцию проводят путем взаимодействия нитроароматических соединений **60** с бороновыми кислотами **61** в триэтилфосфите [45] (схема 16), (таблица 7):

Схема 16

23

R ₁	R_2	Выход 62 , %	\mathbf{R}_1	R_2	Выход 62 , %
2-F,3-CH ₃ Ph	Ph	81	Ph	2-MeOPh	56
2-CH ₃ Ph	Ph	78	Ph	2,6-CH3Ph	0
2-MeOPh	Ph	75	Ph	3-BrPh	45
2,6-CH ₃ Ph	Ph	66	Ph	4-IPh	62
3-BrPh	Ph	60	Ph	4-FPh	71
4-IPh	Ph	66	Ph	4-CNPh	69
4-FPh	Ph	82	Ph	2,3-CH ₃ Ph	69
4-CNPh	Ph	73	Ph	2,3,4-MeOPh	56
4-EtSPh	Ph	74	Ph	3-CF ₃ Ph	81
			Ph	Tiophene	82

Таблица 7

Условия реакции: нитросоединение (0.4 ммоль), бороновая кислота (1.2 ммоль), P(OEt)₃ 1.2-2.4 мл, 180°С, 1-24ч, стальная трубка.

Для изучения возможностей этого метода авторы взяли широкий ряд как нитроароматических соединений, так и бороновых кислот. Оказалось, что основным продуктом такого взаимодействия является третичный амин общей формулой **62**. Выход реакции практически не зависит от заместителя в бензольном кольце и остается высоким при использовании как различных нитроароматических фрагментов, так и при различных заместителях в ароматическом кольце бороновой кислоты. Исключение составила только 2,6диметилфенилбороновая кислота, которая не реагировала в этих условиях.

Исходя из таких результатов, авторы предложили следующий механизм протекания данной реакции (схема 17):

Схема 17

На первом этапе триалкилфосфиты с нитросоединениями образуют азадиоксафосфетидины I, которые, в свою очередь, взаимодействуют с бороновыми кислотами с образованием целевых соединений V, при этом реакция протекает через ряд циклических и линейных интермедиатов.

1.1.2 Образование индола и его производных

При восстановлении замещенных 2-нитростиролов соединениями фосфора (III) основными продуктами реакции являются индолы 64. При этом в ряде случаев обнаруживается N-этоксииндол 65 (схема 18), (таблица 8). В работе [46] показано, что смещение выхода в сторону одного из продуктов зависит от соотношения триэтилфосфита и исходного нитростирола. Восстанавливается как цис-, так и транс- изомер исходного нитросоединения, а выход сильно зависит от стерического окружения молекулы, к примеру трансформация о-нитростирола под действием триэтилфосфита дала только следы целевого индола, а взаимодействие β-нитростирола в этих же условиях не дало результатов [29].

Схема 18

гаолица в						
\mathbf{R}_1	R ₂	P(OEt) ₃ ммоль/растворитель	Температура, °C/ время реакции, ч	Выход 64 , %	Выход 65, %	Ссылка
Ph	Н	30	160/18	71	-	[24]
CH ₃	Н	30	160/18	51	-	[24]
CH ₃ CH ₂ CH ₂	Н	30	160/18	60	-	[24]
CH ₃ CO	Н	30	160/18	16	-	[24]
C ₆ H ₅ CO	Н	30	160/18	16	-	[24]
C ₂ H ₅ OCO	Н	30	160/18	19	-	[24]
4-FPh	6-CN	5	150/2	49	51	[46]
Ph	6-CN	5	150/2	46	54	[46]
4-BrPh	6-CN	5	150/2	55	45	[46]
4-MeOPh	6-CN	5	150/2	60	40	[46]
COOMe	4-OBn, 5-OMe	5	156/3	54	-	[47]
COOMe	Н	30	160/3	67	-	[48]

R ₁	R ₂	P(OEt) ₃ ммоль/растворитель	Температура, °C/ время реакции, ч	Выход 64 , %	Выход 65, %	Ссылка
COOMe	6-OMe	30	160/3	74	-	[48]
COOMe	6-iPr	30	160/3	81	-	[48]
CN	Н	5/мезитилен	160/4	69		[49]
Пиридин-2- ил	Н	63	156/2	80	-	[50]
CO-N-COPh	Н	200	145/2	21	11	[51]
C ₂ H ₅ , COOC ₂ H ₅	Н	5	170/4	20	40	[52]
	Н	86	156/8.5	52	-	[53]
	5,6-OMe	5	170/8	90	-	[54]

Таблица 8 (Продолжение)

Механизм образования индола был предложен в работе [24]. Процесс сопровождается формированием промежуточного трехчленного соединения **66** и дальнейшим образованием N-гидроксииндола **67**, который под действием триэтилфосфита восстанавливается в индол **64** (схема 19):

Схема 19

Механизм, объясняющий образование этоксииндола **65** был предложен в работе [46]. Используя меченый изотоп атома кислорода ¹⁸О, авторы показали, что алкилируется кислород нитрогруппы (схема 20):

Как видно из таблицы 8 этоксииндол зафиксирован в значительных количествах лишь в случае присутствия цианогруппы в *мета*-положении к нитрогруппе. Селективность процесса зависит от природы заместителя в ароматическом цикле.

В работах [24, 50] отмечено образование бииндолов **73** в среде триэтилфосфита (схема 21), (таблица 9):

Схема 21

Таблица 9

R	Р(OEt)3, ммоль	Время реакции, ч	Выход 64 , %	Выход 73 , %	Ссылка
CH ₃	30	18	51	11	[24]
CH ₃ CH ₂ CH ₂	30	18	60	4.5	[24]
Ph	30	18	71	7	[24]
Пиридин-2-ил	63	2	80	9	[50]

Показано, что выход бииндола составляет от 4 до 11% и не зависит от заместителя при двойной связи у исходного нитростирола.

Как и в случае тетрагидрохиноксалинов [42, 43], образующиеся бииндолы в присутствии триэтилфосфита могут алкилироваться по азоту **75** [52] (схема 22):

Дезоксигенирование β,β-дизамещенных стиролов протекает неселективно с образованием как аннелированных индолов 77, так и спироциклических индолинов 78, 79 [55] (схема 23):

В случае этил (Е)-2-(2-нитробензилиден)пент-4-еноатов **80** нагревание в триэтилфосфите сопровождается перегруппировкой, при этом этоксикарбонильная группа занимает третье положение [56] (схема 24):

Схема 24

Механизм данного превращения рассмотрен в работе Сандберга [55], включающий в себя как стадию образования нитрена, так и последовательное дезоксигенирование нитрогруппы до нитрозоинтермедиата (схема 25):

Возможность использования в данной реакции нитрогетероциклических соединений проиллюстрирована на примере 5-нитро-6-(проп-1-ен-1-ил)пиримидин-2,4(1*H*,3*H*)-дионов **82**. Показано, что кипячение в триэтилфосфите приводит к образованию пирролопиримидинов **83** с низким выходом [57, 58] (схема 26), (таблица 10):

Схема 26

Таблица 10

R	R ₁	Выход 83 , %
CH ₃	4-HOPh	15
CH ₃	4-AcNHPh	25
CH ₃	2-FPh	37
CH ₃	2,6-F ₂ Ph	12
CH ₃	2-Thienyl	22
CH ₃	3-Thienyl	20
CH ₃	5-Br-2-thienyl	17
CH ₃	2-Furyl	14
<i>n</i> -C ₃ H ₇	4-C ₃ H ₇ OPh	33
<i>n</i> -C ₃ H ₇	4-BnOPh	37

Условия реакции: нитроурацил (3 ммоль), P(OEt)₃ (5 мл), кипячение, 7 ч.

При восстановлении α-(2-гидроксиметил)-β-метокси-*о*-нитрокоричной кислоты γ-лактона (**84**) образуется 3,4-дигидро-5-метокси[1,3]оксазино[3,4-а]индол-1-он (**85**) [59] (схема 27):

Схема 27

Авторы предложили механизм реакции, включающий в себя стадию образования нитрена. Расширение лактона до циклического уретана **85** происходит путем перегруппировки азиридинового интермедиата.

Соответствующий индол образуется, даже когда в качестве заместителя в *орто*-положении к нитрогруппе находится непредельный гетероцикл. Например, дезоксигенирование этилового эфира 5-(2-нитрофенил)-2-фуранкарбоновой кислоты (**86**) приводит к этиловому эфиру 4*H*-фуро[3,2-b]индол-2-карбоновой кислоты (**87**) [60] (схема 28):

Схема 28

1.1.3 Образование карбазола и родственных соединений

Впервые циклизация замещенных 2-нитробиарилов **88** с соединениями фосфора (III) при высоких температурах была проведена Кадоганом [29]. Основным продуктом «Циклизации Кадогана» [29, 48, 61-64] являются карбазолы **89** (схема 29), (таблица 11):

R = OEt, OBu, O(2-EthylHexyl)

Таблица 11					
Карбазол	P(III)	Время, ч	Выход 89 , %	Выход 89' , %	Ссылка
N H 89a	P(OEt) ₃	9	83	-	[29]
N H 89a	PPh ₃	9	43	-	[29]
H 89a	PCl ₃	9	0	-	[29]
H ₃ C N H 89b	P(OEt) ₃	14	76	-	[29]
	P(OEt) ₃	14	36	-	[29]
Br N H 89d	P(OEt) ₃	14	42	-	[29]
N B9e	P(OEt) ₃	14	77	_	[29]

Таблица 11 (Продолжение)

Карбазол	P(III)	Время, ч	Выход 89 , %	Выход 89' , %	Ссылка
N H 89f	P(OEt) ₃	14	83	-	[29]
NH 89g	P(OEt) ₃	14	62	-	[29]
O H 89h	P(OEt) ₃	14	68	-	[48]
N N N N N N N N N N N N N N N N N N N	P(OEt) ₃	14	76	-	[48]
о	P(OEt) ₃	14	62	-	[48]
	PPh ₃ /o-DCB	10	66	-	[62]
	PPh ₃ /o-DCB	10	27	-	[62]
Notes that the second s	PPh ₃ /o-DCB	10	76	-	[62]
89n	Р(OEt) ₃ /4- нитротолуол	5	1	38	[63]
890	Р(ОВи) ₃ /4- нитротолуол	5	1	44	[63]

Таблица 11 (Продолжение)

Карбазол	P(III)	Время, ч	Выход 89 , %	Выход 89' , %	Ссылка
89p	P(O(2- EthylHexyl)) ₃ /4- нитротолуол	5	5	60	[63]
Br N 89q	Р(OEt) ₃ /4- нитротолуол	5	3	57	[63]
Br N 89r	Р(ОВи) ₃ /4- нитротолуол	5	1	63	[63]
Br N 89s	P(O(2- EthylHexyl)) ₃ /4- нитротолуол	5	6	70	[63]
CI N 89t	Р(OEt) ₃ /4- нитротолуол	5	1	74	[63]
	Р(ОВи)3/4- нитротолуол	5	1	73	[63]
	P(O(2- EthylHexyl))3/4- нитротолуол	5	24	62	[63]
89w	Р(OEt)3/4- нитротолуол	5	2	81	[63]
N 89x	Р(ОВи) ₃ /4- нитротолуол	5	2	82	[63]

Таблица 11 (Продолжение)

Карбазол	P(III)	Время, ч	Выход 89 , %	Выход 89' , %	Ссылка
89y	P(O(2- EthylHexyl)) ₃ /4- нитротолуол	5	35	48	[63]

На примере 2-нитробифенила показано, что удобными реагентами для восстановления являются триэтилфосфит и трифенилфосфин [29]. Проведение реакции с трифенилфосфином в *о*-дихлорбензоле приводит к высоким выходам целевых соединений **89k-m** [62]. При этом необходимо отметить, что не указывается образование побочных продуктов. Изменение направления реакции происходит при добавлении к реакционной смеси 4-нитротолуола (1.5 экв.). Основными продуктами в этом случае являются N-алкилзамещенные карбазолы. Авторами было установлено, что алкилирующими агентами могут быть триалкил *пара*-толилфосфоримидаты или диалкил *пара*-толилфосфорамидаты, образующиеся *in situ* [63].

Если в качестве заместителя в *орто*-положении к нитрогруппе есть нафталин, у которого два активных центра для замыкания карбазольного цикла, то результатом реакции будет смесь продуктов **89g** и **90**, причем содержание 7*H*-бензо[с]карбазола (**89g**) гораздо выше, чем изомерного 7*H*-бензо[kl]акридина (**90**) [29] (схема 30):

Схема 30

2,2'-Динитробифенил 91, в аналогичных условиях, превращается только в соответствующий бензо[с]циннолин (92), а альтернативный ему 4,8дигидропирроло[2,3,4,5-*def*]карбазол (93) обнаружен не был [35] (схема 31):

В случае взаимодействия 2-(2-нитрофенил)пиридина (94), образуется только пиридо-[1,2-b]индазол (95) с количественным выходом (схема 32):

Схема 32

фосфора Эффективность различных соединений (III) В реакции дезоксигенирования нитроароматических соединений подробно изучена на примере 2-нитробифенила [35]. В качестве восстановителей были использованы: метилфосфонит, N,N,N',N'',N''-гексаэтилфосфантриамин, 1-этоксидиэтил N,N,N',N'-тетраэтилфосфандиамин, триэтилфосфит, триизопропилфосфит И трихлорфосфан. Реакцию проводили с избытком восстановителя (15-20 моль), скорость расходования которого определяли с помощью ГЖХ-анализа. В результате был установлен следующий порядок реакционной способности соединений фосфора (III): (EtO)₂PMe>(Et₂N)₃P \approx (EtO)P(NEt₂)₂>(EtO)₃P \approx (PrⁱO)₃P >>PCl₃(неактивен) (таблица 12):

Таблица	12
---------	----

X_3P	Температура	Время ^{1/2} , (мин.)
(Pr ⁱ O) ₃ P	143.5	63
(EtO) ₃ P	155	32
(EtO) ₃ P	145	50
(EtO) ₃ P	135	83
$(EtO)_{3}P + Me_{2}NC - OH(1/1)$	144	97

Таблица 12 (Продолжение)

X ₃ P	Температура	Время ^{1/2} , (мин.)
(EtO)P(NEt ₂) ₂	121	около 5
$(Et_2N)_3P$	111	41
(EtO) ₂ PMe	61	154

Быстрее всего реакция протекает в среде диэтил метилфосфонита (EtO)₂PMe. Также было установлено, что трибутил- и трифенилфосфин являются подходящими дезоксигенирующими агентами, но они менее реакционноспособны, чем амиды фосфора или диэтилметилфосфонит (EtO)₂PMe.

Авторы предполагают, что восстановление нитросоединений до целевых карбазолов происходит через соответствующее нитрозосоединение, но выделить промежуточный 2-нитрозобифенил не удалось, поскольку он очень быстро реагирует с триэтилфосфитом с образованием карбазола (время^{1/2} около 2 минут) (схема 33):

Схема 33

1.1.4 Образование индазолов, бензотриазолов, бензоимидазолов, триазолов и

тетраазапенталенов
Успешная циклизация 2-нитробифенилов и 2-нитростиролов в присутствии соединений фосфора (III) в соответствующие карбазолы и индолы открыла путь к созданию широкого ряда новых гетероцикических систем. Циклизация 2-нитробензилиминов **100** привела к индазолам **101**, а 2-нитроазабензенов **102** к бензотриазолам **103** [29, 65] (схема 34):

Схема 34

Таблица 13

Ar	Ph	<i>р</i> - С ₆ Н ₄ СН ₃	<i>о</i> - С ₆ Н4СН3	<i>p</i> - С ₆ Н ₄ ОСН ₃	<i>o</i> - C ₆ H ₄ Br	6-Naphthalene	Ph-2- <i>H</i> - indazol
Выход 101, %	60	55	34	83.5	38	51	38

102

103

Таблица 14

	<i>p</i> -C ₆ 114D1	р-С6П4ОСП3	$p-C_6H_4CI$	$p-C_6H_4CH_3$
Выход 103, % 72.	5 68	31	68	54

Взаимодействие N-бензилиден-2-нитроанилина **104**, с триэтилфосфитом в кипящем *трет*-бутилбензоле приводит к образованию 2-фенилбензимидазолов **105** [66] (схема 35):

Схема 35

R = H (47%), Me (33%)

1,2-Бис(2-нитробензил)диазен (106) при кипячении в триэтилфосфите с небольшим выходом дает 2,2'-бииндазол (107) [29, 67] (схема 36):

1,2-Бис(2-нитрофенил)диазен (108) в тех же условиях с хорошим выходом превращается в термостойкое взрывчатое вещество дибензо[b,f]-1,3a,4,6a,-тетраазапентален (109) [29, 68] (схема 37):

Схема 37

Схема 36

Аналогичным образом происходит взаимодействие N-замещенных триазола **110** и бензотриазолов **112**, **114** с соединениями фосфора (III) [69] (схема 38):

Схема 38

R = Et, *n*-Bu

Выход целевого продукта зависит от природы восстанавливающего агента, например, взаимодействие **112** или **114** с трибутилфосфином быстрее, чем с менее нуклеофильным триэтилфосфитом, но селективность намного выше с триэтилфосфитом.

Диметил 1-(2-нитрофенил)-1*H*-1,2,3-триазол-4,5-дикарбоксилат (**116**) при взаимодействии с триэтилфосфитом в толуоле превращается в тетраазапентален **117**, а при взаимодействии с трибутилфосфином в бензоле – в хиноксалин **118** [69] (схема 39):

Схема 39

При кипячении *о*-нитрофенилпиразола (**119**) в триэтилфосфите образуется с небольшим выходом пиразоло[1,2-а]бензотриазол (**120**) [70] (схема 40):

Схема 40

В аналогичных условиях нафтотриазин **121** реагирует с образованием триазолонафтотриазина **122** [71] (схема 41):

Схема 41

Изомерный бензотриазолонафтотриазин 124 был получен с небольшим выходом при кипячении 1-замещенного нафтотриазина 123 [72] (схема 42):

Еще одно производное триазина–13-оксобензотриазоло[1,2-b]бензо[1,2е]триазин (127), полученное кипячением 3,4-дигидро-4-оксо-1,2,3-бензотразина (126) в триэтилфосфите, было описано в работе [73] (схема 43):

Схема 43

Схема 42

1.1.5 Образование антранилов и фенотиазинов

Восстановительная циклизация нитросоединений с участием богатых электронами центров в 5-положении кольца была изучена на примере образования антранилов **129** из *о*-нитрофенилкетонов **128** [66] (схема 44):

При взаимодействии (2-нитрофенил)(фенил)метанона (128а) с триэтилфосфитом образуется 3-фенилантранил (129а) с выходом 56%. При восстановлении 2'-нитрохалькона (128b) основным продуктом является 2стирилантранил (129b) с хорошим выходом 54%. 5-Хлор-2-нитроацетофенон (128c) в аналогичных условиях превращается в соответствующий 3-метил-5хлорантранил (129c) с выходом 37%. Следует отметить, что 2-нитроацетофенон (130) в подобных условиях не замыкается в антраниловый цикл, а единственным продуктом оказался N-(2-ацетилфенил)фосфорамидат (132) (схема 45):

Схема 45

При микроволновом облучении (3,6-диметокси-2-нитрофенил)(2,5диметоксифенил)метанона (133) с хорошим выходом был получен антранил 134 [74] (схема 46):

Схема 46

Взаимодействие 4-(2-нитробензоил)дигидрофуран-2(3*H*)-она (**135**) с триэтилфосфитом приводит к образованию спироиндолина **136** [59] (схема 47): Схема 47

Помимо образования пятичленных циклов, описанных выше, при восстановлении 2-нитродифенилсульфида (137) в среде кипящего триэтилфосфита образуется фенотиазин (138) с выходом 54% [66] (схема 48):

Схема 48

При изучении механизма этой реакции была обнаружена необычная перегруппировка. Так, 4-метил-2-нитродифенилсульфид (**139**) восстанавливается до ожидаемого 2-метилфенотиазин (**140**) (36%). Однако, изомерный 4'-метил-2-нитродифенилсульфид (**141**) при восстановлении превращается в 3-метилфенотиазин (**142**) (43%) [33](схема 49):

Схема 49

X= Me, Cl, t-Bu

Такой результат позволил авторам предположить, что шестичленное кольцо формируется после перегруппировки пятичленного промежуточного соединения,

образованного путем электрофильной атаки в 1-позиции, обогащенные электронами [33] (схема 50):

Вероятно, что замыкание цикла, связанное с циклизацией на незамещенное кольцо протекает по маршруту, аналогичному перегруппировке Хаяси карбоксибензофенонов в сильных кислотах [75].

1.1.6 Дезоксигенирование нитронитрозо- и динитроароматических соединений

Впервые взаимодействие *о*-динитробензола (143) с триэтилфосфитом исследовал Кадоган в работе [76]. Оказалось, что основным продуктом в этом случае является диэтил *о*-нитрофенилфосфонат (144) (75%) и этилнитрит (145) (схема 51):

Схема 51

Небольшое количество триэтилфосфата было обнаружено в продуктах реакции, что свидетельствует о параллельном процессе восстановления, но этот процесс скорее является конкурирующим. Наиболее простое объяснение полученным продуктам 144 и 145 – это нуклеофильное замещение фосфитом. При замене триэтилфосфита на другие восстанавливающие агенты, такие как диэтилметилфосфонит и этилдифенилфосфонит, были получены соответствующие *о*-нитрофенилфосфинаты.

В отличие от *о*-динитробензола при дезоксигенировании *о*нитрозонитробензола (146) образуется бензофуразан (148) [29] (схема 52):

Реакция проходит ступенчато: сначала восстановление при комнатной температуре до бензофуроксана (147), а затем его восстановление триэтилфосфитом при температуре 150°С до бензофуразана (148).

1.2 Особенности дезоксигенирования алифатических нитросоединений соединениями трехвалентного фосфора

Взаимодействие алифатических нитросоединений с производными трехвалентного фосфора исследовано в меньшей степени, чем ароматических. Впервые взаимодействие нитрометана с триэтилфосфитом было отмечено в работе Арбузова [27]. Несмотря на отсутствие результата (авторы утверждали, что не удалось зафиксировать продуктов реакции) был обнаружен небольшой расход исходных соединений.

В отличие от триэтилфосфита, взаимодействие нитроалканов с PCl₃ приводит к широкому ряду нитрилов **152** [78] (схема 53), (таблица 15):

Схема 53

Таблица 15

149	152	Условия реакции	Выход 152, %
NO ₂ 149a	√N 152a	10 мин, 60°С	62
0-(`0-√N 152b	1 ч, 60°С	77
CH ₃ (CH ₂) ₁₀ CH ₂ NO ₂ (149c)	CH ₃ (CH ₂) ₁₀ CN (152c)	12 ч, 95°С	74
$C1CH_2CH_2CH_2NO_2$ (149d)	C1CH ₂ CH ₂ CN (152d)	24 ч, 20°С	42
O2NCH2CH2CH2COOCH3 (149e)	NCCH ₂ CH ₂ COOCH ₃ (152e)	5 ч, 50°С	43
O ₂ NCH ₂ C(CH ₃)CHCH ₂ OAc (149f)	NCC(CH ₃)CHCH ₂ OAc (152f)	1 ч, 25°С	31

Таблица 15 (Продолжение)

149	152	Условия реакции	Выход 152 , %
NO ₂ 149g	N 152g	24ч, 25°С	43
CH ₂ CH(CH ₂) ₂ CH(OAc)CH ₂ NO ₂ (149h)	CH ₂ CH(CH ₂) ₂ CH(OAc)CN (152h)	18 ч, 25°С	54
NO ₂ 149i OAc	N 152i OAc	18 ч, 25°С	74

Реакция протекает при наличии ряда функциональных групп и не требует образования щелочных солей нитропарафинов либо высоких температур. Выход целевых нитрилов составил от 31 до 77%. Авторы предполагают, что первоначально образуется четырехчленный цикл 150. Под действием пиридина интермедиат 150 переходит в эфир 151, который омыляется до нитрила 152.

Восстановление алифатических нитросоединений является удобным способом получения соответствующих карбонильных производных [80, 81]. Считается, что восстановление проходит через имин, который подвергается быстрому гидролизу в водной или кислой среде. В работе [19] Бартон и сотрудники обнаружили, что алифатические и алициклические вторичные нитросоединения **153** при воздействии на них смеси трибутилфосфина и 1,2дифенилдисульфана, восстанавливаются до имина **154**. После обработки водой имины **154** превращаются в соответствующие карбонильные соединения **155** (схема 54), (таблица 16):

Схема 54

46

153	155	Условия реакции	Выход 155, %
ACO NO2		12 ч, 60°С	55
Ph-O		3 ч, 25°С	82
Ph-O- NO ₂ H ₃ C	Ph-O-S-Ph H ₃ C	12 ч, 25°С	76

Трибутилфосфин-дифенилдисульфидный реагент **156** был впервые представлена Хата и сотрудниками [82] для превращения первичных или вторичных спиртов в соответствующие фенилтиоэфиры (сульфиды). Впоследствии было показано, что он также способен превращать альдегиды (но не кетоны) в фенилтиоацетали и эффективен при раскрытии эпоксидов. Механизм образования иминов, в соответствии с экспериментальными наблюдениями, представлен на схеме 55:

Схема 55

Таблица 16

Трибутилфосфин и 1,2-дифенилдисульфан реагируют обратимо с образованием фосфорана 156, который атакует кислород аци-формы нитрогруппы 157. В случае первичной нитрогруппы образуется нитрил 160. Вторичные нитросоединения приводят к имину 154, возможно, через кетоксим.

Если в структуре исходной молекулы помимо нитрогруппы есть карбонильная, то процесс дезоксигенирования может приводить к различным азотсодержащим гетероциклам. Так, при взаимодействии нитрокетона **161** с трибутилфосфином и 1,2-дифенилдисульфаном в ТГФ (либо дихлорметане) образуются пирролы **162** с выходом от 61 до 90% (схема 56), (таблица 17):

Схема 56

Таблица 17

161	Пиррол 162	Условия реакции	Выход 162 , %
H ₃ C NO ₂	H ₃ C N H	1 ч, 25°С	90
H ₃ C NO ₂ Ph CH ₃ O NO ₂	H ₃ C N CH ₃	48 ч, 25°С	90
Et_0 Ph Ph NO ₂	Ph O N Et O H Ph Ph Ph	24 ч, 25°С	65

Таблица 17 (Продолжение)

161	Пиррол 162	Условия реакции	Выход 162 , %
H ₃ C NO ₂ H ₃ C H ₃ C	H ₃ C N H	3 ч, 25°С 48 ч, кипячение	61

Взаимодействие *гем*-нитронитрозосоединений **163** с триэтилфосфитом исследовал Бурдон. Авторы рассчитывали получить новый подход к синтезу диазиринов [79] (схема 57):

Схема 57

Вместо трех эквивалентов, с 2-нитро-2-нитрозопропаном 163 ($R = CH_3$), фосфита и результатом прореагировал только один эквивалент ЭТОГО 165. взаимодействия Попытка оказался нитроимин дальнейшего дезоксигенирования 165 триэтилфосфитом не дала результатов. После детального изучения особенностей этой реакции, авторы предложили следующий механизм (схема 58):

Схема 58

В отличие от нитроалканов галогеннитроалканы гораздо активнее реагируют с соединениями фосфора (III). Результат такого взаимодействия зависит от природы восстанавливающего агента, способа выделения продукта и условий проведения реакции. Впервые о взаимодействии галогеннитроалканов с соединениями фосфора (III) сообщил Арбузов в работе [27]. В качестве основных

продуктов авторам удалось идентифицировать триэтилфосфат и бромистый этил. При взаимодействии бромнитрометана **166** с триэтилфосфитом в диэтиловом эфире, образуется триэтилфосфат (94%) и HCN (66%), содержание которого было измерено с помощью чувствительного к цианиду электрода [84] (схема 59):

Схема 59

Br
$$NO_2$$
 $\xrightarrow{P(OEt)_3}$ $OP(OEt)_3$ + HCN
94% 66%

Однако, этот результат не совпадает с результатом ранее описанным Арбузовым и сотрудниками [27], где основными продуктами реакции были триэтилфосфат (55%), этилбромид (49%) и газообразные продукты, в состав которых входит этилен.

В 1991 году Бургесс и Донелли, при изучении замещения фтора на галоген в дигалогенфенилнитрометанах, повторили опыт Арбузова [88]. В результате этого были идентифицированы следующие продукты: этилгалогенид 168, триэтилфосфат, бензонитрил 152а (он же является основным продуктом реакции), N, N-дифенилмочевина 169, N-фенилбензамид 170 И хлорбензалимино диэтилфосфат 171 (если Hal = Cl). Было обнаружено, что более практично проводить реакцию при 0°C, а затем дать ей пройти до завершения при температуре окружающей среды в течение пяти часов. Дихлорфенилнитрометан не реагировал с триэтилфосфитом при 0°С, но результат удалось воспроизвести медленным добавлением фосфита к реакционной смеси при температуре 10-15°С (схема 60):

При взаимодействии 1-бром-1-нитроалканов **183** с трифенилфосфином образуются соответствующие нитрилы **185** [21, 83] (схема 61) (таблица 18):

Схема 61

Таблица 18				
166	173	Условия реакции	Выход 173 , %	Ссылка
BrNO ₂	H— ⊒ N	Бензол,1ч, 5°С NaOH	28	[83]
H ₃ C Br NO ₂	H₃C—≡N	Бензол, 1ч, 5°С NaOH	50	[83]
H ₃ C Br NO ₂	H ₃ CN	Бензол, 12ч	63	[21]
CH ₃ (CH ₂) ₆ CHNO ₂ Br	CH ₃ (CH ₂) ₆ CN	Бензол, 12ч	72	[21]
	N O CH ₃	Бензол, 12ч	50	[21]

Схема 62

Кислотный гидролиз соли 172 приводит к образованию карбоновых кислот 175 (схема 63):

51

R = H (67%); Me (72%); Et (74%)

Специале и Смит в своей работе [22] предположили, что взаимодействие нитробромалканов **166** с трифенилфосфином проходит через начальную нуклеофильную атаку брома (схема 64):

Схема 64

С другой стороны было показано, что при взаимодействии 1-бром-1нитроалканов **166** с триметил или триэтилфосфитом в хлороформе образуется смесь Е- и Z- изомеров диметил-(либо диэтил)-1-гидроксииминоалкил фосфонатов **176** [85] (схема 65), (таблица 19):

Схема 65

R	R'	Выход 176, %
Me	Me	52
Et	Me	62
<i>i</i> -Pr	Me	50
Bu	Me	58
Me	Et	54
Et	Et	56

Таблица 19

Авторы предложили вероятный механизм для этой реакции (схема 66):

Дезоксигенирование нитрогруппы триалкилфосфитом и одновременное эллиминирование брома в соединении **A** на первом этапе приводит к промежуточному соединению **B** и триалкилфосфату. Добавление второго моль триалкилфосфита к **B** приводит к атаке атома углерода при нитрогруппе и получению фосфониевой соли **C**. Происходит эллиминирование стабильного алкилбромида с образованием **D**, который, в свою очередь таутомеризуется в более устойчивый оксим **E**.

В работе [77] Аллен показал, что 2-хлор-2-нитропропан 177 реагирует с триэтилфосфитом с получением диэтилизопропилиденаминофосфата 178, триэтилфосфата и этилхлорида (схема 67):

Схема 67

Не было установлено, является ли восстановление нитросоединения до нитрозо первой стадией этого процесса, поскольку при взаимодействии 2-хлор-2-

Схема 66

нитрозопропана 179 образуется также диэтилизопропилиденаминофосфат 178, но скорость этой реакции гораздо выше.

Оно и сотрудники при изучении дезоксигенирования геминальных хлорнитрозо- **180** и хлорнитро- **182** циклоалканов обнаружили, что соединения восстанавливаются с расширением цикла по типу перегруппировки Бекмана с последующим гидролизом до соответствующих лактамов **181** и **183** [86, 87] (схема 68):

Так, при добавлении к раствору нитрозосоединения **180** трифенилфосфина сразу пропадает насыщенная синяя окраска, а температура от комнатной поднимается до 70°С. Реакция протекает очень быстро с хорошим выходом соответствующего лактама **181**. Родственные нитросоединения **182** реагируют аналогично, но при более высоких температурах, стоит также отметить, что нет никаких доказательств участия в этом превращении нитрозосоединения.

Таким образом, можно утверждать, что реакция нитросоединений с соединениями трехвалентного фосфора является удобным подходом для получения широкого ряда органических соединений (схема 69):

В зависимости от условий проведения и структруры исходного субстрата могут быть получены фосфозены, амины, нитрилы, фосфорамиды, фосфороксиды, а также ароматические и насыщенные гетероциклические соединения. Отсутствие единого понимания механизма дезоксигенирования, а также отсутствие использования насыщенных гетероциклов в данной реакции делает актуальным работы по исследованию этого взаимодействия.

Глава 2. Обсуждение результатов

2.1 Получение нитросодержащих алигетероциклов

В главе «обсуждение результатов» введена новая нумерация соединений, схем, рисунков и таблиц.

2.1.1 Получение гетерилзамещенных 5-нитро-1,3-диоксанов

5-Нитро-1,3-диоксаны находят применение в качестве полупродуктов для энергоемких материалов [98] и биологическиактивных веществ [99, 100]. Однако, практически отсутствует информация о гетерилзамещенных 5-нитро-1,3диоксанах [101, 94].

Для получения соединений данного класса были использованы два подхода. **Подход 1** основан на модификации 2-(гидроксиметил)-2-нитропропан-1,3-диола (1) в три стадии. За основу **второго подхода** было взято фотоиндуцированное алкилирование 5-бром-5-нитро-1,3-диоксанов различными азолами.

Для синтеза 5-нитро-1,3-диоксан-5-ил-1*H*-1,2,3-триазолов на первом этапе работы нитроспирт 1, полученный из нитрометана и параформа в условиях реакции Анри, конденсировали с диметоксиметаном, **2a** [89], альдегидами, **2b-d**, или кетонами, **2c–h** [90], в присутствии кислотных катализаторов. Выход 1,3диоксанов **2** составил от 50 до 88%. В дальнейшем, полученные соединения **2a–h**, подвергали окислительному азидированию в присутствии К₃[Fe(CN)₆] в щелочной среде [91] (схема 1):

Схема 1

2, **3** a $R_1 = R_2 = H$, b $R_1 = H$, $R_2 = Me$, c $R_1 = H$, $R_2 = Ph$, d $R_1 = H$, $R_2 = m-NO_2-Ph$, e $R_1 = R_2 = Me$, f $R_1 = Me$, $R_2 = Et$, g $R_1 = R_2 = -(CH_2)_4$ -, h $R_1 = R_2 = -(CH_2)_5$ -

Как было показано ранее [94], гетероциклические α-нитроазиды охотно

вступают в реакцию 1,3-диполярного циклоприсоединения к замещенным ацетиленам. Поэтому их дальнейшая модификация была основана на взаимодействии с алкинами.

В качестве объектов исследования были использованы 1-замещенные **4a-f** и 1,4-дизамещенные **4g-k** 1*H*-1,2,3-триазолы, а также 1,4,5-тризамещенный 1*H*-1,2,3-триазол **4l** (схема 2):

Монозамещенные триазолы **4a-f** были синтезированы из соответствующих нитроазидов **3a-f** и триметилсилилацетилена (TMCA), который явился удобной заменой ацетилену для синтеза подобных соединений [93]. Реакцию проводили при комнатной температуре в водно-метанольной среде в присутствии сульфата меди (II), аскорбиновой кислоты и карбоната калия. Выход целевых продуктов практически не зависит от порядка смешения компонентов, и составляет от 41 до 73% (таблица 1).

Таблица 1

R1, R2	 О Н Н Н Н Н	 0 0 CH ₃ 4b	4c	O ₂ N 4d	 0 H ₃ C ^O CH ₃ 4е	U H ₃ C 4f
Выход, (%) ^[b]	65	41	60	65	73	52

[[]а] Условия реакции: азид За-f (5 ммоль), ТМСА (6 ммоль), К₂СО₃ (6.25 ммоль), аск. кислота (1 ммоль), CuSO₄·5H₂O (0.5 ммоль), CH₃OH/H₂O (40/20 мл), 24 часа, комнатная температура.
[b] Выход вещества после выделения методом колоночной хроматографии

На примере смеси стереоизомеров *цис-***3f** и *транс-***3f** (1:1, результаты NOESY) было показано, что реакция циклоприсоединения одинаково успешно проходит для обоих соединений (схема 3):

Схема 3

Соотношение 1-(2-метил-5-нитро-*цис*-2-этил-1,3-диоксан-5-ил)-1*H*-1,2,3-триазола (*цис*-4f) и 1-(2-метил-5-нитро-*транс*-2-этил-1,3-диоксан-5-ил)-1*H*-1,2,3-триазола (*транс*-4f), определенное на основании результатов ¹H-ЯМР спектроскопии и корреляционного эксперимента NOESY, осталось неизменным (1:1, моль/моль).

1-(2,2-Диметил-5-нитро-1,3-диоксан-5-ил)-4-(триметилсилил)-1*H*-1,2,3триазол (**4g**) был синтезирован с выходом 72% согласно процедуре, описанной в работе [94].

Триазолы **4h–k** были получены присоединением азидов **3d,g,h** к фенилацетилену либо к пропаргиловому спирту в присутствии аскорбиновой кислоты и сульфата меди (II). Время реакции составило от 2 до 6 часов, выход от 76 до 87% (таблица 2):

Таблица	2
---------	---

Соединение	Ph O_2N N N O_2CH_3 4h			
Время реакции, ч	3	2	4	6
Выход, (%) ^[b]	87 (86 [94])	80 (86 [94])	82	76
Т пл, °С	161-163	28-31	175-179.5	167.5-170.5

[а] Условия реакции: азид 3d,g,h (5 ммоль), ацетилен (6 ммоль), CuSO₄·5H₂O (0.75 ммоль), аск. кислота (2.5 ммоль), ТГФ/Н₂O (10/10 мл), 2-6 часов, комнатная температура.
[b] Выход вещества после выделения методом колоночной хроматографии

Триазол 41 был получен согласно ранее описанной процедуре [94].

Для введения азолов в 5-положение диоксанов был использован метод фотоиндуцированного алкилирования [97, 101]. Исходным соединением для этого процесса, был выбран (2,2-диметил-5-нитро-1,3-диоксан-5-ил)метанол (2е), и ряд 1*H*-1,2,3-триазол, 1*H*-1,2,4-тразол, азолов: 1*Н*-имидазол, 4-фенил-1*H*-1,2,3-1*Н*-тетразол, 5-фенил-1*Н*-тетразол, 1*H*-1,3-бензимидазол триазол, И 1*H*бензотриазол. Направление А – окислительное сочетание продукта 2е, а направление В – фотоиндуцированное алкилирование 5-бром-2,2-диметил-5нитро-1,3-диоксана (6), который легко получается из 1,3-диоксана 2е [96] (схема 4):

Схема 4

При окислительном сочетании, независимо от строения азола, попытки получить целевые 5-азолилзамещенные диоксаны **8** оказались неудачными. Вместо этого образовывался продукт "сдвоения" – 2,2,2',2'-тетраметил-5,5'-динитро-5,5'-би-1,3-диоксан (7) [98].

Направление **B** было выбрано в качестве основного для получения 5-азолил-2,2-диметил-5-нитро-1,3-диоксанов **8а-I**. Фотоиндуцированное алкилирование подобных систем ранее изучалось на примере 5-бром-5-нитро-2-фенил-1,3диоксана и неплохо зарекомендовало себя [101]. Однако, была проведена оптимизация условий реакции, подходящих для соединения **6** (таблица 3):

	-
аопина	- 1
гаолица	v

Азол	T, ℃	W, Bt	λтах, нм	Время, ч	Основание	Выход, (%) ^[a]
Имидазол	25	60	800	72	K ₂ CO ₃	57
Имидазол	20	100	365	47	Cs ₂ CO ₃	74
Бензимидазол	35	100	400	96	K ₂ CO ₃	1
Бензимидазол	25	75	365	50	K ₂ CO ₃	60
Бензимидазол	20	75	365	48	LiOH	13
Бензимидазол	20	75	365	48	Cs ₂ CO ₃	69

[а] Выход вещества после выделения методом колоночной хроматографии

Реакция проводилась в среде ацетонитрила при комнатной температуре или небольшом нагреве. Имидазол и бензимидазол были выбраны как исходные азолы для оптимизации условий реакции. В качестве оснований использовали поташ, карбонат цезия и гидроксид лития. Исследовались 4 различные длины волн и лампы с различной мощностью. Оказалось, что наиболее оптимальными условиями взаимодействия для этих азолов являются: Cs_2CO_3 – основание, 4 УФ лампы по 25Вт с λ_{max} =365нм и время реакции около 48 часов. Эти условия были выбраны как наиболее оптимальные для получения соедиений **4e,h** и **8a-l** (таблица 4).

Таблица 4

Азол	Продукт	Время реакции, ч	Выход, (%) ^[b]	Тпл, °С
HN	0_2N N N 0_3C CH ₃ 8a	47	74	119-122
HN	$O_2 N N N$ $O_2 O O$ $H_3 C C H_3$ Bb	48	69	140-141 с разложением
	0_2 N N N N N N N N N N	54	61	104-105
N	$N = N = 0$ $O_2 N = N = 0$ $O_2 N = N = 0$ $O_2 N = 0$ $O_2 N = 0$ $O_3 = $		26	72-73
HN N	$O_2 N N N$ $O_2 O O O$ $H_3 C C H_3$ $B d$	20	71	94-95
			16	130-131
HNNN	$O_2N \sim N \sim N$ $O_2N \sim N \sim N$ $O_2N \sim CH_3$ $H_3C \sim CH_3$ $H_3C \sim CH_3$	58	36	161-163
			49	115-116

Азол	Продукт	Время реакции, ч	Выход, (%) ^[b]	Т _{пл} , °С
N N H		280	59	120-121
	$ \begin{array}{c} $	380	26	масло
N-N X N	O ₂ N N N O O H ₃ C CH ₃ 8i	240 (100) ^[c]	58 (48) ^[c]	116-117
N H			22 (26) ^[c]	101-102
	$ \begin{array}{c} $	500 (110) ^[c]	0 (8) ^[c]	126-128
		500 (110) ^[c]	80 (72) ^[c]	95-96

Таблица 4 (Продолжение)

[a] Условия реакции: бромид 8 (2 ммоль), азол (2 ммоль), Cs₂CO₃ (2 ммоль), hv 100 Bt, CH₃CN (10 мл), комнатная температура, 20-500 часов

[b] Выход вещества после выделения методом колоночной хроматографии

[с] Добавка AIBN

В случае алкилирования незамещенного 1*H*-1,2,3-триазола (продукты **4e**, **8c**) время реакции увеличилось до 54 часов, при этом выходы 1-замещенного и 2замещенного продукта составили 61 и 26% соответственно. В случае с бензотриазолом наблюдалось похожее соотношение выхода 1 и 2-замещенных изомеров, однако, время реакции сократилось до 20 часов. Обратное соотношение изомеров установлено только в случае с 4-фенил-1*H*-1,2,3-триазолом, выход 1замещенного продукта – 36%, а 2-замещенного – 49%, при этом время реакции составило 58 часов. Взаимодействие в этих же условиях 1*H*-1,2,4-триазола (продукты 8g,h) привело к похожему результату по соотношению продуктов – выход 1-замещенного изомера также оказался выше, чем 2-замещенного, но время реакции увеличилось до 380 часов (16 дней). При алкилировании 1*H*-тетразола соотношение изомеров составило приблизительно 2/1, а время реакции около 10 дней. Для того, чтобы сократить время при алкилировании 1*Н*-тетразола добавили азабисизобутиронитрил (AIBN), как катализатор радикальных реакций. Наиболее заметными оказались результаты по увеличению скорости алкилирования 5фенилтетразола: время взаимодействия сократилось практически в 5 раз, при этом удалось выделить 1-замещенный тетразол, который не был получен в предыдущем случае. Соотношение изомеров при алкилировании как 1Нтетразола, так и 5-фенилтетразола соответствует литературным данным [102, 103].

Строение диоксанов **4а-1** и **8а-1** было подтверждено методами ЯМР спектроскопии. В ¹Н-ЯМР спектрах сигналы метиленовых протонов О—СН₂—С регистрируются в виде двух дублетов в интервалах δ 4.55-5.05 и 4.64-5.42 м.д. (⁴*J* = 12.0 Гц). В ¹³С-ЯМР спектрах наблюдаются резонансные сигналы в областях 121-135 и 133-148 м.д. характерные для гетероароматических атомов углерода. В ИК-спектрах наблюдаются полосы, характерные для колебаний нитрогрупп (1563-1585 см⁻¹(*as*NO₂), 1332-1383 см⁻¹(*s*NO₂)). Полученные диоксаны **4а-1** и **8а-1** ионизируются как в положительно, так и в отрицательно заряженных ионах ЖХ/МС при атмосферном давлении в виде [М+Н]⁺ и [М-Н]⁻.

2.1.2 Получение гетерилзамещенных 5-нитропергидропиримидинов и 5нитротетрагидрооксазинов

Из производные 2-нитро-1,3литературных данных известно, что пропандиола легко взаимодействуют с первичными аминами и формальдегидом. В зависимости от условий проведения (соотношения компонентов, полярности растворителя и pH среды) реакция может приводить к образованию целого ряда продуктов _ аминоспиртов, тетрагидро-1,3-оксазинов и 3,5-замещенных пиперидинов [105-113]. Возможность синтеза 5-нитро-5-(1H-1,2,3-триазол-1ил)гексагидропиримидинов 13 5-нитро-5-(1*H*-1,2,3-триазол-1-И ил)тетрагидрооксазинов 14 из соответствующих азидов 11 и 12 путем 1,3диполярного циклоприсоединения к алкинам была изучена в работе [94] (схема 5):

Схема 5

В условиях каталитического циклоприсоединения к терминальным ацетиленам, предложенный способ оказался эффективным инструментом для синтеза 1,4-дизамещенных триазолов. Однако, термическая циклизация с сопровождалась интернальными ацетиленами значительным разложением исходных азидов 11-12, что снижало выход целевых продуктов. Еще одним недостатком этой схемы явилась низкая селективность синтеза исходных гексагидропиримидинов 9-10, что привело к очень низкому выходу целевых структур (~25% в пересчете на нитрометан) (схема 6):

После анализа этих данных был разработан новый способ синтеза 5-нитро-5-(1*H*-1,2,3-триазол-1-ил)гексагидропиримидинов **13** и 5-нитро-5-(1*H*-1,2,3триазол-1-ил)тетрагидрооксазинов **14**, открывающий широкие возможности для построения и функционализации таких структур. Согласно схеме 2 были наработаны соединения **4e**,**i**,**l** легко трансформируемые в замещенные 1*H*-1,2,3триазол-1-ил-2-нитро-1,3-пропандиолы **17** – ключевые синтоны для построения гексагидропиримидинов и тетрагидрооксазинов (схема 7):

Схема 7

 $\begin{aligned} \mathbf{R}_1 &= \mathbf{R}_2 = \mathbf{H} \text{ (e); } \mathbf{R}_1 = \mathbf{H}, \mathbf{R}_2 = \mathbf{CH}_2\mathbf{OH} \text{ (i); } \mathbf{R}_1 = \mathbf{R}_2 = \mathbf{CH}_2\mathbf{OH} \text{ (l),} \\ \mathbf{R} &= \mathbf{MeNH}_2, \textit{i-Pr-NH}_2, \textit{t-BuNH}_2, \textit{Cyclo-Hex-NH}_2, \textit{Bn-NH}_2 \end{aligned}$

Условия реакции раскрытия диоксанового цикла были оптимизированы (таблица 5):

Соединение	Кислота (экв.)	Растворитель	Темп., сС	Время, ч	Выход 17 , (%) ^[a]
	PTSA (1)	MeOH	40	4	80
10	HCl (7.5)	MeOH/H ₂ O	20	2	96
40	Dowex 50W- X ₂ -200 (10)	MeOH	40	24	53
	PTSA (1)	MeOH	40	6	77
4i	HCl (7.5)	MeOH/H ₂ O	20	2	98
	Dowex 50W- X ₂ -200 (10)	MeOH	40	36	47
	PTSA (1)	MeOH	40	5	82
41	HCl (7.5)	MeOH/H ₂ O	20	2	96
+1	Dowex 50W- X ₂ -200 (10)	MeOH	40	36	51

Таблица 5

[а] Выход вещества выделенного без дополнительной очистки

Наиболее оптимальным вариантом раскрытия диоксанового цикла 4e,i,l является сочетание соляной кислоты и водного метанола при комнатной температуре. Полученный таким образом пропандиол, как правило, не требует дальнейшей обработки и дополнительной очистки.

На следующем этапе были исследованы особенности поведения 2-нитро-2триазолоил-1,3-пропандиолов **16e,i,l** в условиях реакции Манниха. В качестве первичных аминов были использованы метиламин, изопропиламин, *трет*бутиламин, циклогексиламин и бензиламин (схема 7). Реакцию проводили при 75°C в водном этаноле, с различным соотношением компонентов, при этом основными продуктами оказались гексагидропиримидины **17** и тетрагидрооксазины **18** (таблица 6):

таолица о	Τ	Ъ	Л	И	Ia	6
-----------	---	---	---	---	----	---

Продукт	R	R ₁ , R ₂	16:RNH ₂ :CH ₂ O	Выход 17, (%) ^[b]	Выход 18 , (%) ^[с]
a	*CH ³	Н	1:2.5:1	53	0
b	H ₃ C CH ₃	Н	1:2.5:1	57	10
c	CH₃ H₃C ┿ CH₃ *	Н	1:2.5:1	55	8
d	*	Η	1:2.5:1	52	9
e		Н	1:2.5:1	38	0
a	*CH ³	Н	1:1:3	35	32
b	H ₃ C CH ₃	Н	1:1:3	40	20 ^[b]
c	H ₃ C H ₃ CH ₃	Н	1:1:3	54	13 ^[b]
d	Ç.	Н	1:1:3	51	9 ^[b]

Таблица 6 (Продолжение)

Продукт	R	R ₁ , R ₂	16:RNH ₂ :CH ₂ O	Выход 17 , (%) ^[b]	Выход 18 , (%) ^[c]
e	Î.	Н	1:1:3	29	38
f	*_CH ³	CH ₂ OH	1:2.5:1	58	0
g	H ₃ C CH ₃	CH ₂ OH	1:2.5:1	39	27
h	$H_3C \xrightarrow{CH_3} CH_3$	CH ₂ OH	1:2.5:1	43	0
i	Ŷ	CH ₂ OH	1:2.5:1	52	11
j	,	CH ₂ OH	1:2.5:1	61	0
f	*CH ³	CH ₂ OH	1:1:3	21	21
g	H ₃ C CH ₃	CH ₂ OH	1:1:3	14	33 ^[b]
h	H ₃ C-H ₃ +	CH ₂ OH	1:1:3	36	8 ^[b]
i	↓ •	CH ₂ OH	1:1:3	46	6 ^[b]
j		CH ₂ OH	1:1:3	6	38 ^[b]
k	*CH ³	2CH ₂ OH	1:2.5:1	63	0
l	H ₃ C CH ₃	2CH ₂ OH	1:2.5:1	40	0
m	H ₃ C-+CH ₃ *	2CH ₂ OH	1:2.5:1	33	0
n	Ŷ	2CH ₂ OH	1:2.5:1	39	0
0		2CH ₂ OH	1:2.5:1	54	13
k	*CH ³	2CH ₂ OH	1:1:3	51	5

Продукт	R	R 1, R 2	16:RNH ₂ :CH ₂ O	Выход 17 , (%) ^[b]	Выход 18 , (%) ^[c]
l	H ₃ C CH ₃	2CH ₂ OH	1:1:3	35	17
m	H ₃ C H ₃ +	2CH ₂ OH	1:1:3	33	13
n		2CH ₂ OH	1:1:3	31	16
0		2CH ₂ OH	1:1:3	44	6

Таблица 6 (Продолжение)

[а] Условия реакции: диол 16 (2 ммоль), амин (2 или 5 ммоль), 40% формалин (2 или 6 ммоль), EtOH (4 мл), 75°C, 2ч

[b] Выход вещества после выделения методом колоночной хроматографии

[с] Выход посчитан с помощью ЖХ/МС

Как видно из приведенных данных, в независимости от природы амина и количества заместителей у 1*H*-1,2,3-триазола, основным продуктом реакции является 5-нитро-5-(1*H*-1,2,3-триазол-1-ил)гексагидропиримидин **17**. Попытка сместить равновесие в сторону образования большего количесва тетрагидрооксазинов путем увеличения в смеси формалина, не привела к положительному результату.

Для получения 5-азолилзамещенных-5-нитро-тетрагидрооксазинов использовался метод фотоиндуцированного алкилирования. В качестве исходного соединения был выбран 5-бром-3-(*трет*-бутил)-5-нитро-1,3-оксазинан (20), полученный бромированием гидроксиметильного тетрагидродиоксана 9b. Реакцию фотоиндуцированного алкилирования проводили в описанных ранее условиях, в качестве азолов были взяты 5-фенил-1*H*-тетразол и 1*H*-бензотриазол (схема 8), (таблица 7):

Схема 8

Таблица 7

Азол	Продукт	Время реакции, ч	Выход, (%) ^[b]	Тпл, °С
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	0 ₂ N N N t-Bu N O 21a	800	20	127.5-129.5
	U2N N t-Bu N 21b	96	40	84-85
N _N /NH	N N N N N N N N N N N N N N	96	13	114-115

[а] Условия реакции: бромид **20** (2 ммоль), азол (2 ммоль), Cs₂CO₃ (2 ммоль), hv 100 Bt, CH₃CN (10 мл), комнатная температура, 96-800 часов.

[b] Выход вещества после выделения методом колоночной хроматографии

Результатом алкилирования 5-фенилтетразола, даже после 800 часов выдержки, стал только один продукт – **21а** с выходом 20%. Взаимодействие с бензотриазолом оказалось более успешным, в результате этой реакции удалось выделить как 1*H*-замещенный, так и 2*H*-замещенный продукты.

Строение полученных соединений было подтверждено методами ЯМР спектроскопии. В ¹Н-ЯМР спектрах гексагидропиримидинов **17а-о** сигналы метиленовых протонов N—CH₂—N регистрируются в виде дублетов при δ 3.21-3.24 м.д. (²J = 8.8 Гц) и при 3.83-4.00 м.д. (²J = 8.8 Гц), сигналы протонов N—CH₂—C регистрируются в виде дублетов при δ 3.28-3.35 м.д. (²J = 12.2 Гц) и при 4.22-4.32 м.д. (²J = 12.2 Гц). В ¹Н-ЯМР спектрах тетрагидрооксазинов **18а-о**, **21а-с** сигналы метиленовых протонов N—CH₂—C регистрируются в виде дублетов при δ 3.63-3.77 м.д. (²J = 12.4 Гц) и при 4.40-4.53 м.д. (²J = 12.5 Гц), сигналы протонов N—CH₂—O регистрируются в виде дублетов при δ 4.20-4.32 м.д. (²J = 8.0 Гц) и при 4.54-4.65 м.д. (²J = 8.0 Гц), сигналы протонов О—CH₂—C регистрируются в виде дублетов при δ 4.20-4.32 м.д. (²J = 8.0 Гц) и при 4.54-4.65 м.д. (²J = 8.0 Гц), сигналы протонов О—CH₂—C регистрируются в виде дублетов при δ 4.34-4.47 м.д. (²J = 12.5 Гц) и при 5.04-5.12 м.д. (²J = 12.5 Гц).

В ИК-спектрах наблюдаются полосы характерные для колебаний нитрогрупп (1553-1567 см⁻¹(_{as}NO₂), 1338-1362 см⁻¹(_sNO₂)). В ¹³С-ЯМР спектрах наблюдаются резонансные сигналы в областях 121-135 и 133-148 м.д. характерные для триазольных атомов углерода. Сигнал четвертичного углерода пиримидинового и оксазинового цикла наблюдается при 93-96 м.д. Соединения **17а-о** и **18а-о**, **21а-с** ионизируются как в положительно, так и в отрицательно заряженных ионах ЖХ/МС при атмосферном давлении в виде [M+H]⁺ и [M-H]⁻.

2.1.3 Получение гетерилзамещенных 3-нитроазетидинов

Интерес к нитроазетидинам начал расти в начале 90-х годов XX века благодаря тринитроазетидину (TNAZ) и его взрывчатым свойствам. Существует несколько подходов к синтезу таких соединений: взаимодействие аминов с эпихлоргидрином [114-115], модификация 3-амино-1,2-пропандиола [116], а также взаимодействие 1-азабицикло[1.1.0]бутана с азотистой кислотой [117]. В работе [94] описан метод получения 3-азидо-3-нитроазетидина и его дальнейшая модификация. Именно такой путь был выбран для синтеза ряда 1-(1-*mpem*-бутил-3-нитроазетидин-3-ил)-1*H*-1,2,3-триазолов. Ключевым соединением для этого стал 3-азидо-3-нитроазетидин **24** (схема 9) [91]:

Схема 9

Геминальный нитроазид **24** был получен согласно ранее разработанной схеме из нитрометана, формальдегида и *трет*-бутиламина путем окислительного азидирования соли нитроалкана **23**. Реакцию азидирования проводили в щелочной среде, с избытком азида натрия, а в качестве окислителя был выбран феррицианид калия (K₃[Fe(CN)₆]). З-Азидо-З-нитроазетидин **24** представляет собой низкоплавкий стабильный продукт, с высокой реакционной способностью.

Как уже было показано выше, гетероциклические α-нитроазиды легко вступают в реакцию 1,3-диполярного циклоприсоединения с терминальными и интернальными ацетиленами. В качестве исследуемых соединений были

использованы как 1-замещенные, так и 1,4-дизамещенные 1*H*-1,2,3-триазолы (схема 10):

Схема 10

Монозамещенный тразол 25а был синтезирован путем взаимодействия 3азидо-3-нитроазетидина (26) с триметилсилилацетиленом (ТМСА) в воднометанольной среде в присутствии сульфата меди (II), аскорбиновой кислоты и карбоната калия.

1,4-Дизамещенные триазолы **25с-п** были получены взаимодействием 3азидо-3-нитроазетидина и замещенных ацетиленов в присутствии аскорбиновой кислоты и сульфата меди (II). Время реакции составило от 2 до 8 часов.

1-(1-(*трет*-Бутил)-3-нитроазетидин-3-ил)-4-триметилсилил-1*H*-1,2,3триазол (**27b**) был получен из 3-азидо-3-нитроазетидина **24** и ТМСА без катализатора, согласно процедуре, описанной в работе [94] (таблица 8):

Соединение	R	Время реакции, ч	Выход, (%) ^[b]	Тпл, єС
25a	* H	24	86	86-88
25b	∗—Si—	48	78 (62 [94])	76-78
25c	*	3	50	62-64
25d	·	2	74 (66 [94])	120-121
25e	F 	2	75	149-151

Таблица 8
Соединение	R	Время реакции, ч	Выход, (%) ^[b]	Тпл, єС
25f		4	77	109-111
25g		4	93	124-126
25h		3	58	137-139
25i	·	4	87	149-150
25j		4	81	94-95
25k	·{>	6	61	114-116
251		5	62	122-124
25m		5	70	145-147
25n		8	60	149-150

Таблица 8 (Продолжение)

[а] Условия реакции (25а): азид 24 (5 ммоль), ТМСА (6 ммоль), К₂СО₃ (6.25 ммоль), аск. кислота (1 ммоль), CuSO₄·5H₂O (0.5 ммоль), CH₃OH/H₂O (40/20 мл), 24 часа, комнатная температура. Условия реакции (25b): азид 24 (5 ммоль), ТМСА (7.5 ммоль), CH₂Cl₂ (5 мл), кипячение 24ч. Условия реакции (25с-п): азид 24 (5 ммоль), ацетилен (6 ммоль), CuSO₄·5H₂O (0.75 ммоль), аск. кислота (2.5 ммоль), ТГФ/ H₂O (10/10 мл), 2-6 часов, комнатная температура.
[b] Выход вещества после выделения методом колоночной хроматографии

Независимо от строения исходного ацетилена, выход целевых триазолов составил от 50 до 93%.

Для получения 3-тетразолилзамещенных азетидинов был использован 3бром-1-(*трет*-бутил)-3-нитроазетидин (26), который получали бромированием 3гидроксиметил-1-(*трет*-бутил)-3-нитроазетидина гидрохлорида (23) в водном растворе NaOH при 0°C. Дальнейшая модификация продукта 26 проводилась в условиях реакции фотоиндуцированного алкилирования. В качестве исходных азолов были выбраны 1*H*-тетразол и 5-фенил-1*H*-тетразол (схема 11):

При взаимодействии азетидина **26** с 5-фенилтетразолом образовалось два изомера с преобладанием 2*H*-продукта **27а**, а взаимодействие с тетразолом привело к образованию смеси с небольшим преобладанием азетидина **28b**. Изомерный состав продуктов соответствует литературным данным [102, 103] (таблица 9):

Таблица 9

Тетразол	Продукт	Время реакции, ч	Выход, (%) ^[b]	Тпл,°С
N N N	27a	200 (110) ^[c]	66 (63) ^[c]	105-107
*	28a		4 (7) ^[c]	114-117
N ^{-N} N-*	27b	3000 (120) ^[c]	18 (28) ^[c]	56-58
	28b		22 (42) ^[c]	95-96

[а] Условия реакции: бромид **26** (2 ммоль), азол (2 ммоль), Cs₂CO₃ (2 ммоль), hv 100 Bt, CH₃CN (10 мл), комнатная температура,110-3000часов

[b] Выход вещества после выделения методом колоночной хроматографии

[c] Добавка AIBN

Для увеличения скорости взаимодействия, в реакционную массу добаляли AIBN. При этом соотношение изомеров осталось то же, но время реакции уменьшилось для 5-фенил-1*H*-тетразола почти в 2 раза, а для тетразола в 25. Так же следует отметить, что конверсия азетидина **26** в реакции с тетразолом была неполной, и составляла около 60%. Полученные изомеры разделялись методом препаративной хроматографии.

Соединения **25а-п**, **27а,b** и **28а,b** представляют собой кристаллические вещества. В ИК-спектрах наблюдаются полосы, характерные для колебаний нитрогруппы (1562-1579 см⁻¹ (*as*NO₂), 1363-1368 см⁻¹ (*s*NO₂)). Спектры ¹Н-ЯМР характеризуются большой константой спин-спинового взаимодействия, составляющей около 10.0 Гц, и нетипичными значениями δ 4.15-4.29 и 4.38-4.48 м.д. для протонов CH₂ азетидинового цикла [120]. Азетидины **25а-п**, **27а,b** и **28а,b** ионизируются как в положительно, так и в отрицательно заряженных ионах ЖХ/МСпри атмосферном давлении в виде [M+H]⁺, [M-H]⁻ и [M+H-N₂]⁺[119].

2.2 Дезоксигенирование нитросодержащих алигетероциклов

2.2.1 Дезоксигенирование гетерилзамещенных 3-нитроазетидинов

Изучение реакции дезоксигенирования гетерилзамещенных 3нитроазетидинов началось с 1-(1-(*трет*-бутил)-3-нитроазетидин-3-ил)-1*H*-1,2,3триазолов **25**. Было обнаружено, что в результате кипячения в бензоле с избытком триэтилфосфита 1-(1-(*трет*-бутил)-3-нитроазетидин-3-ил)-1*H*-1,2,3-триазолы **25** превращаются в 1-(1-(*трет*-бутил)-2,5-дигидро-1*H*-имидазол-4-ил)-1*H*-1,2,3триазолы **29**.

Для выяснения оптимальных условий реакции варьировали производные фосфора (III) (триэтилфосфит, трифенилфосфин, трифенилфосфит и хлордифенилфосфин) и различные растворители (толуол, бензол, 1,4-диоксан, 1,2-дихлорэтан и тетрагидрофуран (ТГФ)). В качестве модельного соединения был выбран 1-(1-(*трет*-бутил)-3-нитроазетидин-3-ил)-4-фенил-1*H*-1,2,3-триазол (**25d**) (схема 12) (таблица 10):

Схема 12

Таблица 10

Соединение P(III)	Соотношение 11d : P(III) (моль)	Растворитель	Время реакции, ч	Выход 29d/30d , (%) ^[a]
P(OEt) ₃	2	Бензол	60	51/42
P(OEt) ₃	4	Бензол	30	83

Соединение P(III)	Соотношение 11d : P(III) (моль)	Растворитель	Время реакции, ч	Выход 29d/30d , (%) ^[a]
P(OEt)3	6	Бензол	14	85
P(OEt)3	8	Бензол	10	88
P(OEt)3	10	Бензол	10	86
P(OEt) ₃	8	Толуол	6	70
P(OEt) ₃	8	1,4-Диоксан	10	75
P(OEt)3	8	1,2-Дихлорэтан	15	83
P(OEt) ₃	8	ΤΓΦ	18	58
PPh ₃	2	Бензол	20	60
P(OPh) ₃	2	Бензол	60	Следы
PC1Ph ₂	2	Бензол	60	Следы

Таблица 10 (Продолжение)

[а] Выход посчитан с помощью ГХ/МС

За ходом реакции следили с помощью ЖХ/МС и ГХ/МС анализа. Помимо триэтилфосфита и триэтилфосфата в реакционной смеси методом ГХ/МС были обнаружены два продукта с очень близкими временами удерживания (18.35 и 18.48 мин) и m/z 269, что соответствует замещенным 2,5-дигидро-1*H*-имидазолам **29d** и **30d**. Основной продукт **29d** (время удержания 18.35 мин) дает характерную для 1*H*-1,2,3-триазолов фрагментацию с выбросом N₂ (m/z ($I_{omn.}$,%) 269 (5) [M]⁺, 254 (40) [M-CH₃]⁺, 226 (33) [M-CH₃-N₂]⁺) в условиях электронного удара. Однако, в ГХ/МС минорного продукта **30d** (время удержания 18.48 мин) был обнаружен стабильный ион, который соответствует 2*H*-1,2,3-триазолу (m/z ($I_{omn.}$,%) 269 (8) [M]⁺, 254 (21) [M-CH₃]⁺, 145 (71) [M-123]⁺).

Использование в качестве восстанавливающих агентов P(OPh)₃ и PClPh₂ в бензоле не дало результатов. Было обнаружено, что эффективность триэтилфосфита (P(OEt)₃) и трифенилфосфина (PPh₃) в кипящем бензоле одинакова, однако выход целевого продукта ниже с триэтилфосфитом. Анализ

ГХ/МС-спектров показал. длительное взаимодействие 25d с что трифенилфосфином (36-40 часов) в кипящем бензоле приводит к частичной деструкции конечного соединения с образованием 4-фенил-1*H*-1,2,3-триазола (31). Наиболее оптимальный результат был достигнут при использовании 6-10 кратного мольного избытка триэтилфосфита в кипящем бензоле. Селективность реакции оказалась высокой, не было обнаружено какой-либо молекулярной деструкции и второго изомера 30d. Использование двухкратного мольного избытка триэтилфосфита, сильно увеличивало время реакции (48-60 часов), и уменьшало конверсию исходного материала, приблизительно 10 процентов азетидина не реагировали. В толуоле и 1,4-диоксане реакция заканчивалась через 6 и 10 часов соответственно, но продукт частично подвергался деструкции и выход целевого соединения 29d падал. В ТГФ конверсия исходного материала была неполной, и выход не превысил 58%. Использование 1,2-дихлорэтана привело к хорошему результату, но благодаря своей инертности был выбран бензол.

Таким образом, было установлено, что взаимодействие азетидина **25d** с соединениями фосфора (III) дает максимальный выход с 8 кратным мольным избытком триэтилфосфита в кипящем бензоле и временем реакции 10 часов. Для изучения селективности процесса, используя подобранные условия, был синтезирован ряд 1-(1-*трет*-бутил-2,5-дигидро-1*H*-имидазол-4-ил)-1*H*-1,2,3-триазолов **29а-т** [118] (схема 13) (таблица 11):

Схема 13

Таблица	11
---------	----

Соединение	R	Время реакции, ч	Тпл, єС	Выход, (%) ^[b]
29a	*—н	14	65-71	88
29b	∗—Si—	13	80-86	87
29c	*	12	50-53	95
29d		10	10 83-86	
29e		10	91-95	62
29f	·	10	101-105	68
29g	·	11	147-150	66
29h	CI CI	12	142-147	90
29i	·{F F	10	127-130	72
29j		10	114-117	75
29k	·	11	108-111	61
291	·\	11	-	70
29m	·{}	12	-	83 ^[c]
30m	·{	12	-	17 ^[c]

[a] Условия реакции: азетидин **25а-п** (1 ммоль), P(OEt)₃ (8 ммоль), бензол (3 мл), кипячение, 5-15 часов

[b] Выход вещества после выделения методом колоночной хроматографии

[с] Выход посчитан с помощью ¹Н-ЯМР спектра

Проведенное исследование показало, что реакция с триэтилфосфитом идет без теплового эффекта или изменений окраски раствора. Обнаружить промежуточные 1-(1-(*трет*-бутил)-3-нитрозоазетидин-3-ил)-1*H*-1,2,3-триазолы хроматографическими методами не удалось. При размеренной дозировке триэтилфосфита целевые 2,5-дигидроимидазолы **29а-т** и **30m** были обнаружены

немедленно. Таким образом, наиболее вероятный путь расширения азетидинового цикла проходит через стадию ионной пары, что подтверждается наличием второго изомера **30**.

2,5-Дигидроимидазолы 29a-m бесцветными являются ИЛИ слабоокрашенными кристаллическими веществами. В ИК-спектрах этих соединений отсутствуют полосы колебаний нитрогруппы, в то время как в области колебаний связи C=N появляется интенсивная полоса (1691-1700 см⁻¹). В ¹Н-ЯМР спектрах сигналы метиленовых протонов регистрируются в виде двух триплетов с большой константой спин-спинового взаимодействия ${}^{4}J_{\rm H,H} = 4.8-5.0$ Гц. В ¹³С-ЯМР спектрах в области слабого поля наряду с резонансными сигналами атомов углерода вицинального триазола, обнаруживается сигнал в районе 157 м.д. 2,5-Дигидроимидазолы 29а-т ионизируются как в положительно, так и в отрицательно заряженных ионах ЖХ/МС при атмосферном давлении в виде $[M+H]^+$, $[M-H]^-$ и $[M+H-N_2]^+$.

Было обнаружено, что стабильность 2,5-дигидро-1*H*-имидазолов **29а-m** зависит от заместителя в четвертом положении триазольного цикла. В случае незамещенного **29а** и алкилзамещенных **29b,c,m** продуктов 1*H*-имидазолы появляются в небольших количествах уже в процессе дезоксигенирования. Поэтому следующим этапом работы стало изучение стабильности 2,5-дигидро-1*H*-имидазолов в различных условиях. Для поиска оптимальных условий реакции окисления, 1-(1-(*трет*-бутил)-2,5-дигидро-1*H*-имидазол-4-ил)-4-фенил-1*H*-1,2,3-триазол (**29d**) был выбран в качестве модельного соединения в условиях варьирования различных окислителей (O₂ (воздух), H₂O₂, MnO₂, DDQ,) и растворителей (ацетонитрил, ТГФ, CH₂Cl₂) (схема 14), (таблица 12):

Таблица 12

Окислитель	Количество окислителя, экв.	Растворитель	Время реакции, ч	Выход, (%) ^[a]
О2 (воздух)	-	CH ₃ CN	10	53
H ₂ O ₂	10	CH ₃ CN	24	27
MnO ₂	13	ΤΓΦ	48	50
DDQ	2	CH ₂ Cl ₂	1	95

[а] Выход вещества после выделения методом колоночной хроматографии

При использовании воздуха в качестве окислителя, даже после 10 часов барботирования, конверсия исходного соединения не превысила 60%. Окисление перекисью не привело к положительному результату, выход реакции не превысил 27%, а при увеличении концентрации перекиси и нагреве была обнаружена деструкция исходного соединения. Наиболее известным окислителем для получения 1*H*-имидазолов является MnO₂ [125], но даже 13 экв. избытка не 2,5-дигидроимидазола. позволили получить полную конверсию Лучший результат, был достигнут при использовании DDQ в сухом CH₂Cl₂. Таким образом, 1-(1-(*трет*-бутил)-1*Н*-имидазол-4-ил)-1*Н*-1,2,3-триазолы **32а-т**, **33т** взаимодействии соответствующих 2,5-дигидро-1*H*были получены при имидазолов с DDQ [118] (схема 15), (таблица 13):

Схема 15

Соединение	R	Время реакции, ч	Тпл, єС	Выход, (%) ^[b]
32a	*H	1	80-81	91
32b	∗−Si−	1	132-133	76
32c	*	1	93-95	92
32d		1	99-101	95
32e		1	138-140	85
32f		1	146-148	92
32g	CI	1	163-165	93
32h	CI CI	1	153-154	95
32i	·	1	134-136	60
32j		1	152-154	74
32k	·	1	115-117	78
321		1	130-132	76
32m		1	152-154	31
33m	{}	1	170-173	22 ^[c]

Таблица 13

[а] Условия реакции: 2,5-дигидро-1*H*-имидазолы **29а-т** (0.5 ммоль), DDQ (1 ммоль), CH₂Cl₂ (3 мл), комнатная температура, 1ч

[b] Выход вещества после выделения методом колоночной хроматографии

[с] Вещество выделено в как минорный продукт с помощью препаративной хроматографии

Изомерные 2*H*-замещенные-1,2,3-триазолы были обнаружены с помощью ГХ/МС спектроскопии практически во всех случаях восстановления в количестве 1-5%, что делало их выделение и идентификацию практически невозможным. Увеличение количества второго изомера оказалось возможным при проведении дезоксигенирования с эквимольным количеством триэтилфосфита. На примере азетидинов **25а,d** удалось получить соответствующие 2-(1-(*трет*-бутил)-1*H*-имидазол-4-ил)-2*H*-1,2,3-триазол (**33a**) и 2-(1-(*трет*-бутил)-1*H*-имидазол-4-ил)-4-фенил-2*H*-1,2,3-триазол (**33d**) (схема 16), (таблица14):

Схема 16

Таблица 14

Соединение	R	Время реакции, ч	Тпл, єС	Выход, (%) ^[b]
33 a	*H	60	127-130	23
33d	*	60	208-210	42

[а] Условия реакции: 2,5-дигидро-1*H*-имидазолы **25а,d** (1 ммоль), P(OEt)₃ (2 ммоль), бензол (3 мл), кипячение, 60 часов

[b] Выход вещества после выделения методом колоночной хроматографии

Выделить соответствующие 2,5-дигидро-1*H*-имидазолы **29а,d** и **30а,d** не удалось, поскольку 1*H*-имидазолы начинали образовываться в процессе дезоксигенирования. Образование изомеров **33** с большим соотношением можно объяснить разницей в pK_a . 1*H*-1,2,3-триазол, благодаря показателю pK_a =13.9 [126], в условиях избытка триэтилфосфита нуклеофильно атакует 2*H*-1,2,3-триазол (pK_a =10.3 [127]) с образованием одного продукта **29**. Но в условиях эквимольного

количества триэтилфосфита изомер **30** успевает перейти в стабильный 1*H*-имидазол **33**, который удалось выделить в существенном количестве.

Изучение влияния азольного цикла на ход реакции дезоксигенирования было проведено на примере соединений **27а,b** (схема 17):

Схема 17

R = Ph (**a**), H (**b**)

Имидазолины **34а,b** выделить не удалось, поскольку уже в реакционной смеси начали появляться продукты окисления 1*H*-имидазолы **35а,b**. Наличие тетразола, как более электроно-дефицитного цикла, увеличивает время реакции до 24 часов. Выход имидазола **35а** составил 45%, а имидазол **35b** удалось обнаружить в следовых количествах с помощью ГХ/МС.

1*H*-имидазолы **32**, **33**, **35** представляют собой бесцветные кристаллические вещества. В ¹H-ЯМР спектрах сигналы протонов имидазола регистрируются в виде двух дублетов с типично низкой константой спин-спинового взаимодействия 1.6 Гц [128]. В ¹³С-ЯМР спектрах в области слабого поля регистрируются сигналы углерода, характерные для вицинального триазола, и сигналы углерода, характерные для вицинального триазола, и сигналы углерода, так и в отрицательно заряженных ионах ЖХ/МС при атмосферном давлении в виде [M+H]⁺, [M-H]⁻ и [M+H-N₂]⁺.

2.2.2 Дезоксигенирование гетерилзамещенных 5-нитро-1,3-диоксанов

Изучение реакции дезоксигенирования гетерилзамещенных 5-нитро-1,3диоксанов началось с 1-(5-нитро-1,3-диоксан-5-ил)-1*H*-1,2,3-триазолов 4. Было обнаружено, что взаимодействие начинается при комнатной температуре и, как и в случае азетидинов 25, сопровождается расширением цикла и селективным образованием 4,7-дигидро-1,3,5-диоксазепинов 36. Оптимальные условия были выбраны согласно ранее описанной процедуре [118] (схема 18) (таблица 15):

Схема 18

Соединение	R ₁	R ₂	R ₃	Время, реакции, ч	Выход, (%) ^[b]	Тпл, єС
3 6a	Н	Н	Н	12	41	102-105
36b	Н	Me	Н	5	72	67-70
36c	Н	Ph	Н	10	89	97-100
36e	Me	Me	Н	13	61	86-87
36f	Me	Et	Н	10	81	65-68
36g	Me	Me	SiMe ₃	15	72	91-94
36h	Me	Me	Ph	15	63	103-105
36j	-(CH ₂) ₄ -	-(CH ₂) ₄ -	Ph	8	52	135-137
36k	-(CH ₂) ₅ -	-(CH ₂) ₅ -	Ph	9	65	148-151

[а] Условия реакции: диоксан 4 (1 ммоль), Р(ОЕt)₃ (8 ммоль), бензол (3 мл), кипячение, 5-15 часов

[b] Выход вещества после выделения методом колоночной хроматографии

Скорость реакции слабо зависит от строения исходного нитросоединения и, прежде всего, определяется избытком триэтилфосфита, как и в случае азетидинов.

Таблица 15

Наиболее оптимальный избыток составил 8 ммоль, при использовании меньшего количества триэтилфосфита реакция идет очень медленно и не всегда удается ее завершить, а использование большего количества нецелесообразно, поскольку скорость реакции практически не меняется. Увеличение температуры, полученное за счет замены растворителя на толуол или ксилол, позволяет снизить время реакции до 5-10 часов, однако в ряде случаев приводит к существенному целевых соединений, поскольку уменьшению выхода сопровождается деструкцией финальных молекул. Так на примере нитродиоксана 4h, методом ЖХ/МС анализа было установлено, что при повышении температуры от 80 до 110°C дезоксигенирование сопровождается частичной деструкцией с образованием 4-фенил-1,2,3-триазола (31). Анализ результатов ЖХ/МС показал, что разложение протекает с образованием четырех соединений. Кроме целевого продукта **36h** (rt = 2.68 мин, m/z = 273 [M+H]⁺ (100), 255 [M+H-N₂]⁺ (20)) и 4фенил-1,2,3-триазола (31) (rt = 1.82 мин, $m/z = 146 \, [M+H]^+$ (100)) наблюдаются хроматографические пики веществ с временами удержания 2.57 (37, *m/z* = 273 [М+Н]⁺ (100)) и 2.62 (**31**, *m/z*: 243 (41), 215 (25), 146 (100)) мин. Масса иона продукта 37, равная массе иона целевого соединения, а также отсутствие элиминирования азота и увеличение полярности соединения позволяет говорить об образовании 2-замещенного 1,2,3-триазола 37 за счет миграции диоксазепинового заместителя во второе положение триазольного цикла. Подобные термические перегруппировки описаны в литературе для некоторых 1алкилзамещенных 1,2,3-триазолов [121-124], однако термолиз нитродиоксана 4h не привел к образованию 2-замещенного 1,2,3-триазола даже при 110°С. Масса 243 может принадлежать протонированному иону оксазолина 38, который образуется при рециклизации диоксазепинового кольца. Механизм образования 4фенилтриазола 31 не вполне очевиден. Он может получаться как напрямую из целевого продукта, так и из продуктов его превращения (схема 19):

Проведение термолиза диоксазепина **36h** показало, что при нагревании в толуоле (110°C) 4-фенил-1,2,3-триазол **31** образуется и в отсутствии соединений фосфора (III). Реакция протекает медленно, а в качестве побочного продукта образуется лишь 2-замещений 1,2,3-триазол **37**.

Дальнейшее изучение реакции дезоксигенирования проводили с 5азолилзамещенными 1,3-диоксанами **9а-п** (схема 20) (таблица 16):

Схема 20

Таблица 16

Исходный диоксан	Продукт	Время реакции, ч	Выход, (%) ^[b]	Тпл, °С
$ \begin{array}{c c} & & & & \\ & & & & \\ & & & & \\ & & & &$		13	65	104-106

Исходный диоксан	Продукт	Время реакции, ч	Выход, (%) ^[b]	Тпл, °С
$O_2 N N N$ $O_2 O O$ $H_3 C C H_3$ $B b$	о Н ₃ С 39b	47	44	123-124
		24	48	86-87
O ₂ N N N'N		64	33	80-81.5
H ₃ CCH ₃	N N N N N N N N N N N N N N N N N N N		10	_
		70	19	80-81.5
H ₃ C CH ₃ 8e	N N H ₃ C CH ₃ 39d	12	9	_

Таблица 16 (Продолжение)

Исходный диоксан	Продукт	Время реакции, ч	Выход, (%) ^[b]	Тпл, °С
$ \begin{array}{c} $	$ \begin{array}{c} Ph \\ N \\ N$	43	22	103-105
$ \begin{array}{c} $	Ph N N-N H ₃ C H ₃ C H ₃ C H ₃ C H ₃ C	24	40	-

Таблица 16 (Продолжение)

[а] Условия реакции: диоксан 8 (1 ммоль), P(OEt)₃ (8 ммоль), бензол (3 мл), кипячение, 13-72 часов

[b] Выход вещества после выделения методом колоночной хроматографии

Из приведенных данных видно, что 5-азолилзамещенные 1,3-диоксаны 8 также охотно взаимодействуют с триэтилфосфитом с получением соответствующих 4,7-дигидро-1,3,5-диоксазепинов 36е, h, 39a-d. 1,3-Диоксаны, содержашие неаннелированные азолы (8a,c,f,l) реагируют гораздо быстрее, чем диоксаны с аннелированными циклами (8b,d,e), в среднем в 2-3 раза. Такое различие может быть связанно с особенностями делокализации π-электронов и способности образованию ионной пары. 2*H*-1,2,3-триазолы 8c,f к при взаимодействии с триэтилфосфитом дают только 1*H*-1,2,3-триазолы 36e,h. При дезоксигенировании соединения 81 целевой диоксазепин выделить не удалось, во время очистки образовался 2,5-дигидрооксазол 401. Восстановление диоксанов 4,7-дигидро-1,3,5-диоксазепинов, **8d.e** проходит неселективно, помимо образуются 2,5-дигидрооксазолы 40с, d (схема 21):

Наиболее вероятным механизмом образования оксазолов **40** является раскрытие диоксазепинового цикла с дальнейшим элиминированием метанола и последующей циклизацией в пятичленный цикл (схема 22):

Проведенное исследование показало, что взаимодействие нитродиоксанов с триэтилфосфитом происходит без заметного теплового эффекта и изменения окраски раствора, что не характерно для дезоксигенирования нитрозосоединений [79]. Попытка зафиксировать промежуточный 5-нитрозо-1,3-диоксан хроматографическими методами (ЖХ/МС и ТСХ) также не привела к положительным результатам. Даже в условиях недостатка триэтилфосфита и рассредоточенной его дозировки сразу же фиксировался целевой 4,7-дигидро-1,3,5-диоксазепин **36**, **39** [104].

Для оценки реакционной способности и стабильности 4,7-дигидро-1,3,5диоксазепинового цикла был выбран продукт **39с**, поскольку 1*H*-1,2,3бензотриазол является хорошей уходящей группой (схема 21):

Схема 21

При взаимодействии **39с** с дигидрофосфатом калия в водно-спиртовой среде образовался 2,2-диметил-1,3,5-диоксазепан-6-он (**41**), а при взаимодействии с азидом натрия в тех же условиях – 7,7-диметил-9*H*-тетразоло[1,5-е][1,3,5]диоксазепин (**42**).

4,7-Дигидро-1,3,5-диоксазепины являются бесцветными кристаллическими веществами. В инфракрасных спектрах соединений отсутствуют полосы колебаний нитро группы, и появляется интенсивная полоса в области колебаний C=N (1691–1700 см⁻¹). В ¹Н-ЯМР спектрах сигналы метиленовых протонов регистрируются в виде двух триплетов с большой константой спин-спинового взаимодействия ${}^{4}J_{\rm H,H} = 4.8-5.0$ Гц. В ¹³С-ЯМР спектрах в области слабого поля наряду с резонансными сигналами атомов углерода вицинального триазола, обнаруживается сигнал в районе 152–153 м.д., характерный для имидаильного атома углерода [124]. Полученные 4,7-дигидро-1,3,5-диоксазепины ионизируются в положительно заряженных ионах ЖХ/МС при атмосферном давлении в виде [M+H]⁺.

2.2.3 Дезоксигенирование гетерилзамещенных 5нитрогексагидропиримидинов и 5-нитротетрагидрооксазинов

Изучение реакции дезоксигенирования гетерилзамещенных 5нитрогексагидропиримидинов 17 и 5-нитротетрагидрооксазинов 18 проводилось на примере соединений 17с и 18с (схема 22):

Было обнаружено, что вместо ожидаемых семичленных циклов, дезоксигенирование 1,3-ди-*трет*-бутил-5-нитро-5-(1*H*-1,2,3-триазол-1ил) гексагидропиримидина 17с приводит к ряду сложноразделимых продуктов. Выдедить и идентифицировать удалось 2,5-дигидроимидазол 29а и диэтил третбутил(метил)фосфорамидат (43). А при дезоксигенировании 3-(*трет*-бутил)-5нитро-5-(1*H*-1,2,3-триазол-1-илуl)-1,3-тетрагидрооксазина (18с) с выходом 24% 43 диэтил-1*H*-1,2,3-триазол-1-илвыделить фосфорамидат удалось И винилфосфонат (44).

Такой результат говорит о том, что применимость реакции дезоксигенирования существенным образом зависит от строения и стабильности насыщенного нитрогетероцикла.

Схема 22

2.2.4 Механизм реакции дезоксигенирования

Реакция дезоксигенирования в исследованном ряду гетероциклов имеет ступенчатый характер и протекает аналогично дезоксигенированию геминальных хлорнитроциклоалканов трифенилфосфином [87].

Расширение азетидинового и диоксанового циклов проходит через стадию ионной пары. Триэтилфосфит атакует кислород нитрогруппы с образованием переходного состояния I. Дальнейшая атака триэтилфосфитом приводит к образованию ионной пары II и последующему расширению цикла III. Отрицательно заряженный азол атакует образовавшийся C⁺ с образованием соответствующих изомеров IV и V. Механизм представлен на примере 1*H*-1,2,3-триазола (схема23):

Схема 23

Необходимость наличия в α-положении соединения, способного образовывать ионную пару была подтверждена на примере отрицательного результата при дезоксигенировании диоксанов **45** и **46** [90, 91] (схема 24):

Схема 24

Исходные соединения остались неизменными при кипячении в течение 8 часов с избытком триэтилфосфита. Однако, взаимдоействие триэтилфосфита с 5,5-динитро-1,3-диоксаном 47 приводит к кетону 48 (данные ГХ/МС анализа), реакция протекает аналогично дезоксигенированию 2-нитро-2-нитрозопропана [79] (схема 25):

Схема 25

Подробное изучение механизма реакции дезоксигенирования на примере азетидинов и 1,3-диосанов, позволило предположить, что аналогичная стратегия может послужить основой для синтеза различных 4-азолилзамещенных имидазолов (схема 26):

Схема 26

Известно, что 4-азолилзамещенные имидазолы обладают широким спектром биологической активности [118, 129-133]. Несмотря на важность имидазольных соединений, в настоящее время не существует оптимального метода синтеза 4-азолилзамещенных имидазолов. Из литературных данных известно только несколько методов синтеза отдельных представителей с использованием различных подходов, таких как нуклеофильное замещение в галогензамещенных имидазолах (а) (по типу реакции Ульмана) [129-137], 1,3диполярное циклоприсоединение азидоимидазола [138] (b) и образование азола в результате амин-глиоксальной циклизации [139] (c) (схема 27):

Схема 27

R = Alk, Ar; Азол = Пиразол, Имидазол, Бензимидазол

Азол = Тиадиазол, Изоксазол, Имидазол

R = Имидазол

Предположение о том, что добавление избытка азола в реакцию дезоксигенирования позволит перехватить катион имидазолина и приведет к получению новых 4-замещенных имидазолов было проверено на примере азетидина **25d** и пиразола. Реакцию с триэтилфосфитом (8 экв.) проводили в кипящем бензоле, ход процесса контролировали методом ГХ/МС (схема 28):

Схема 28

Избыток пиразола привел к получению 1-(1-*трет*-бутил-2,5-дигидро-1*H*-имидазол-4-ил)-1*H*-пиразола (**49a**) в качестве основного продукта реакции. При помощи газовой хроматографии был расчитан процентный состав реакционной смеси и построена графическая зависимость $S_{B-Ba}/S_{oбщ}$ (S_{subst}/S_{total}) от времени (t, hours). На ней видно, что исходный нитроазетидин **25d** расходуется во времени, а осколочный 4-фенил-1*H*-1,2,3-триазол (**31**) и продукт реакции **49a** образуются. В течение первых часов реакции заметно небольшое образование имидазолина **29d**, но после 7 часов он полностью пропадает. Целевой имидазолин **49a** начинает окисляться в реакционной смеси с образованием 1-(1-*трет*-бутил-1*H*-имидазол-4-ил)-1*H*-пиразол (**49**) (рисунок 1):

Из представленной зависимости видно, что концентрация имидазола **49** медленно увеличивается со временем, а концентрация имидазолина **49a** проходит через максимум и уменьшается со временем. Это указывает на то, что целевое соединение **49** образуется при окислении кислородом воздуха. Кроме того, хотя пять эквивалентов пиразола обеспечивают оптимальный выход, можно использовать и более низкие загрузки пиразола, но это приводит к сложной смеси продуктов, низкому выходу **49** и высокому выходу **29d**.

Используя такой подход, был синтезирован ряд 4-азолилзамещенных имидазолов (таблица 17):

Азол	Соединение	Время, ч	Выход, (%) ^[b]	Тпл, °С
	32a	15	47	80-81
N	33 a	15	10	127-130
HNNN	49	24	33	85-88
HN	N N H ₃ C CH ₃ 50	72	35	85-87

Таблица	17
---------	----

Азол	Соединение	Время, ч	Выход, (%) ^[b]	Тпл,⁰С
	$N \rightarrow N \rightarrow$	11	49	110-112
HN N N	$H_{3}C - CH_{3}$	3	45	129-131
	$H_{3}C - CH_{3}$	12	43	223-225
	$H_{3}C \xrightarrow{H_{3}}CH_{3}$	80	23	233-240

Таблица 17 (Продолжение)

[а] Условия реакции: азетидин 27d (1 ммоль), P(OEt)₃ (8 ммоль), азол (5 ммоль), бензол (3 мл), кипячение, 3-80 часов

[b] Выход вещества после выделения методом колоночной хроматографии

Для оптимизации условий дезоксигенирования и увеличения выхода целевых продуктов было исследовано последовательное добавление пиразола, после 16 часов кипячения **25d** с избытком P(OEt)₃ в бензоле. Оказалось, что в этом случае основной продукт также имидазолин **49a** (рисунок 2). Такой результат означает, что реакция протекает последовательно. После тщательного изучения процесса и ГХ/МС спектров был сделан вывод о том, что происходит нуклеофильное замещение 4-фенил-1*H*-1,2,3-триазола (**31**).

Полученные данные указывают, что за 2 часа происходит полное замещение 4-фенил-1,2,3-триазола в **29d** на пиразол. Дальнейшая выдержка в течение 9 часов не привкла к деструкции или к образованию окисленного продукта.

Известно, что 1*H*-1,2,3-триазолы являются хорошей уходящей группой [140]. Поэтому, для изучения нуклеофильного замещения был выбран 1-(1-(*трет*бутил)-2,5-дигидро-1*H*-имидазол-4-ил)-4-фенил-1*H*-1,2,3-триазол (**29d**), а в качестве нуклеофила – пиразол. Оптимизацию условий реакции проводили в различных средах (бензол, толуол, этанол, ацетонитрил, ТГФ, ДМФА), как в присутствии оснований (триэтиламин, диазабициклоундецен, гидрид натрия), так и без них (таблица 18):

Растворитель	Основание	Время, ч	T,°C	49a , (%) ^[a]	49 , (%) ^[a]	29d , (%) ^[a]	31 , (%) ^[a]
Бензол	-	14	80	96	0	0	4
Толуол	-	5	110	78	15	7	0
Толуол (Ar)	-	5	110	100	0	0	0
Этанол	TEA	39	78	15	3	82	0
CH ₃ CN	TEA	25	82	32	2	66	0
CH ₃ CN	ДБУ	34	82	93	3	2	2
ΤΓΦ	NaH	51	66	56	0	5	39
ДМФА	-	4	153	0	0	100	0

Таблица 18

100

Растворитель	Основание	Время, ч	T,°C	49a , (%) ^[a]	49 , (%) ^[a]	29d , (%) ^[a]	31 , (%) ^[a]
ДМФА	NaH	3	153	43	31	21	5
ДМФА	K ₂ C–O ₃	4	153	12	7	79	2
ДМФА	Cs ₂ C–O ₃	5	153	25	40	35	0

Таблица 18 (Продолжение)

[а] Выход посчитан с помощью ГХ/МС

Селективное замещение 4-фенил-1H-1,2,3-триазола происходило при кипячении в толуоле, либо бензоле, а также при кипячении в среде ацетонитрила в присутствии ДБУ. При использовании ДМФА без основания происходило 100% окисление исходного имидазолина. В присутствии неорганических оснований в среде ДМФА реакция сопровождалась образованием всех четырех соединений.

Для оценки скорости образования **49а** была построена зависимость формирования продукта и расходование исходного вещества при кипячении в бензоле (рисунок 3):

Рисунок 3

Скорость образования 1-(1-*трет*-бутил-2,5-дигидро-1*H*-имидазол-4-ил)-1*H*пиразола (**49a**) примерно равна скорости его образования в присутствии триэтилфосфита, что указывает на отсутствие его существенного влияния на кинетику реакции. Впервые был зафиксирован 2*H*-1,2,3-триазол **33d**. Максимум его образования достигается на четвертом часе, а полное исчезновение за последующие 10 часов. На примере ряда азотсодержащих гетероциклов было изучено нуклеофильное замещение 4-фенил-1*H*-1,2,3-триазола (**31**) в молекуле 1-(1-(*трет*-бутил)-2,5-дигидро-1*H*-имидазол-4-ил)-4-фенил-1*H*-1,2,3-триазола (**29d**) (схема 29), (таблица 19):

Схема 29

Таблица 19

Нуклеофил	Соединение	Условия реакции	Время, ч	Выход, (%) ^[b]	Тпл, °С
HN N N	29a	Бензол	18	65	80-81
	33 a	Бензол	18	7	127-130
HNNN	49	Бензол	14	72	85-88
HN	50	Бензол	60	55	85-87
HNNN	51	ТГФ/NaH	16	52	110-112
	52	CH ₃ CN/TEA	17	36	129-131
N HN N	53	Бензол/ДМСО	96	20	-
	54	Бензол/ДМСО	96	15	-

Нуклеофил	Соединение	Условия реакции	Время, ч	Выход, (%) ^[b]	Тпл, °С
	$H_3C - CH_3$ CH_3	Бензол	47	53	63-64
HN N	$H_{3}C - CH_{3}$	Бензол	13	66	157-161
√=N HN √N	$H_{3}C - CH_{3}$	Бензол/ДМСО	65	40	61-63
HN N ^E N CH ₃	$ \begin{array}{c} $	Бензол	10	73	152-154
√=N HN、N∽N	N N H ₃ C CH ₃ CH ₃ 35b	Бензол/ДМСО/NaH Толуол/ДМФА	25 4	5 ^[c] -	-
	H ₃ C + CH ₃ CH ₃ 58	Бензол	13	85 ^[c]	-

Таблица 19 (Продолжение)

[а] Условия реакции: 2,5-дигидро-1*Н*-имидазол **29d** (0.33ммоль), азол (0.33 ммоль), растворитель (3 мл), кипячение, 4-96 часов

[b] Выход вещества после выделения методом колоночной хроматографии

[с] Выход посчитан с помощью ГХ/МС

В зависимости от азола меняется время полной конверсии исходного соединения. Так, реакция с имидазолом в тех же условиях, что и с пиразолом

проходит за 60 часов, а с 1,2,4-триазолом за 65 часов. По причине высокой лабильности промежуточных имидазолинов, во всех случаях уже в реакционной массе обнаруживался окисленный продукт. В среде аргона удалось получить только соответствующие 2,5-дигидро-1*H*-имидазолы, но хроматографическая очистка приводила к смеси 2,5-дигидро-1*H*-имидазола и 1*H*-имидазола. Из приведенных данных видно, что нуклеофильное замещение проходит как с неаннелированными азолами (пиразол, имидазол, 1,2,4-триазол), так и с бензимидазолом и бензтриазолом. При этом следует отметить, что, несмотря на склонность к алкилированию тетразола, положительный результат с данным азолом получить не удалось. По данным ГХ/МС анализа целевой продукт фиксировался лишь в незначительных количествах (5%).

Для сравнения динамики и направления нуклеофильного замещения с 1*H*-имидазолом была построена диаграмма образования продукта **50** и расходования исходного вещества **29d** (рисунок 4):

Рисунок 4

Общий вид зависимостей сохраняется, основным продуктом является промежуточный имидазолин **50a**, а время полной конверсии **29d** гораздо выше, чем с пиразолом. При этом наблюдается заметное увеличение концентрации **33d**.

Для реакции с 1*H*-1,2,4-триазолом была построена такая же зависимость (рисунок 5):

Характер графика аналогичен зависимостям в реакциях с пиразолом и имидазолом.

2-(1-(*трет*-Бутил)-2,5-дигидро-1*Н*-имидазол-4-ил)-4-фенил-2*H*-1,2,3-

триазол (**33d**) обнаруживается во всех рассмотренных взаимодействиях и имеет максимум на графике. Один из возможных путей образования этого продукта – это перегруппировка 1*H*-1,2,3-триазола в 2*H*-1,2,3-триазол, которая, как правило, происходит в присутствии кислых катализаторов [121-123]. Известно, что исходные азолы являются NH кислотами и могут катализировать такой процесс. Чтобы выяснить причины образования **33d** был проведен ряд экспериментов. Прежде всего, простое кипячение имидазолина **29d** в бензоле не приводит к образованию **33d**, т.е. характер перегруппировки не термический. В присутствии бензамида или гидрида натрия в среде бензола изомер образуется в следовых количествах (~3%, ГХ/МС). Кипячение **29d** с 4-фенил-1*H*-1,2,3-триазолом (**31**), имеющим рКа = 9 (расчет ACDlabs), в среде бензола привело к образованию **33d**.

Из графика зависимости состава реакционной смеси от времени видно, что анализ содержания продуктов взаимодействия осложняется активным окислением исходного **29d** и конечного **33d** имидазолинов (рисунок 6):

104

Чтобы исключить окисленные 1*H*-имидазолы **32d** и **33d** реакцию провели в среде аргона. Оказалось, что **30d** образуется практически сразу после начала реакции и постепенно расходуется с течением времени, пока не достигается равновесие, в котором соотношение **30d** к **29d** становится приблизительно 2/1 (рисунок 7):

Для того, чтобы понять, как влияет азол на образование 2-замещенного триазола **30d** был проведен эксперимент с каталитическим количеством имидазола (рисунок 8):

Как видно из графика, **30d** охотно образуется и проходит через максимум на кривой, срабатывает нуклеофил. помимо этого имидазол как Можно предположить, что протон имидазола катализирует сигматропный сдвиг результате происходит перегруппировка водорода, В чего И исходного имидазолина.

Необходимо отметить, что реакции с азолами протекают в отсутствии щелочного катализа, облегчающего образование аниона. Для оценки влияния строения нуклеофила на скорость замещения 4-фенил-1*H*-1,2,3-триазола (**31**) был взят морфолин (схема 30):

Схема 30

Полная конверсия исходного соединения **29d** наблюдалась уже через 11 ч. Образование **30d** обнаружено не было, что говорит о влиянии кислотно-основных свойств нуклеофила на стадию перегруппировки исходного фенилтриазольного имидазолина. Так же стоит отметить образование в небольшом количестве

окисленного продукта – 4-(1-(*трет*-бутил)-1*Н*-имидазол-4-ил)морфолина (**58**) (рисунок 9):

Рисунок 9

Все попытки выделить целевой имидазолин **58a**, либо окислить его и выделить имидазол **58** оказались неудачными. Вероятно, это связано с высокой лабильностью структуры.

2.3 Функционализация азолилзамещенных имидазолов 2.3.1 Получение монозамещенных 1*Н*-имидазолов

Модификация 1*Н*-имидазолов, полученных в результате реакции дезоксигенирования 1-(1-*трет*-бутил-3-нитроазетидин-3-ил)-1*Н*-1,2,3-триазолов **25**, была исследована на примере снятия *трет*-бутильной группы. Соединение **33d** было выбрано в качестве модельного (схема 31), (таблица 20):

Схема 31

Таблица 20

Кислота/Кислота Льюиса	Количество (экв.)	Время, ч	Выход 59 , (%) ^[a]
HCl	10	12	-
HBr	10	12	-
HF	5	12	Деструкция 33d
H_2SO_4	15	15	-
HNO	2	2	Продукты
111103	Z	L	нитрования 33d
H2SO4+HNO2	5+1	2	Продукты
112504+111103	J^{+1}	L	нитрования 33d
CF ₃ C–OOH	10	14	-
CH ₃ C–OOH	10	15	-
In(CF ₃ SO ₃) ₃	1.1	8	3
AgBr	1.1	10	-
InCl ₃	1.1	10	5
CsClO ₄	1.1	10	7
Yb ₂ O ₃	1.1	10	-
LiBF ₄	1.1	10	2
AlCl ₃ (безводный)	3	14	30
AlCl3 (безводный)	3 (MW)	0.33	88 ^[b]
Al ₂ O ₃	1.1	14	-
Кислота/Кислота Льюиса	Количество (экв.)	Время, ч	Выход 59 ^[а] , %
---	-------------------	----------	------------------------------------
La ₂ O ₃	1.1	14	-
Sm(CF ₃ SO ₃) ₃	1.1	14	5

Таблица 25 (Продолжение)

[а] Выход посчитан с помощью ЖХ/МС

[b] Выход вещества после выделения методом колоночной хроматографии. Условия реакции: толуол, кипячение; МW 300 Вт, 100°С

Было обнаружено, что *трет*-бутильная группа устойчива к минеральным кислотам. Кипячение с большим избытком как соляной, так и серной кислот не дало положительных результатов, исходный имидазол оставался неизменным. Попытка ипользования азотной, либо серно-азотной кислотной смеси привела к нитрованным продуктам, а при использовании плавиковой кислоты были обнаружены следы деструкции исходной молекулы. Использование ряда кислот Льюиса позволило обнаружить целевой монозамещенный 1*H*-имидазол, однако, наиболее удачным оказалось сочетание безводного хлористого алюминия [141] и толуола. При кипячении в толуоле реакция не проходила до конца, и выход составил не более 30%. Хороший выход удалось получить только при использовании микроволновой печи, при этом время реакции составило около 20 минут.

Используя эти условия, с высоким выходом был получен 1-(1*H*-имидазол-4-ил)-1*H*-1,2,3-триазол (**60**) (схема 32):

Схема 32

2.3.2 Особенности нитрования 1-(1-(*трет*-бутил)-1*Н*-имидазол-4-ил)-1*Н*-пиразола

На протяжении многих лет производные нитропиразолов рассматриваются как потенциальные источники для энергонасыщенных и биологически активных соединений. К настоящему моменту изучен широкий ряд замещенных нитропиразолов [142-150].

Для исследования особенностей нитрования был выбран 1-(1-(*трет*-бутил)-1*H*-имидазол-4-ил)-1*H*-пиразол (**49**). Нитрование проводили в концентрированной азотной кислоте и серно-азотной кислотной смеси в интервале температур 0-20°С (схема 33):

При нитровании концентрированной азотной кислотой, образуется только продукт 56 с выходом 61%, но дальнейшее нитрование в этих условиях не Использование серно-азотной кислотной происходит. смеси привело к динитросоединению 62, строение которого было установлено с помощью ЯМР спектроскопии. В ¹Н-ЯМР спектре 62 наблюдается система из двух дублетов и дублеты синглета, при ЭТОМ имеют одного константы спин-спинового взаимодействия J = 0.6 Гц, что характерно для 4-нитропиразола. Поскольку нитрогруппа может находиться как во 2, так и в 4(5) положении имидазольного

цикла, были сделаны корреляционные двумерные гетероядерные спектры HSQC и HMQC (рисунок 10):

HSQC спектр позволил отнести сигналы протонов и незамещенных углеродов для 1, 3 и 5 положений. А с помощью HMQC спектра (рисунок 11) удалось идентифицировать замещенные углероды:

Рисунок 11

Как видно на двумерном спектре, имидазольный протон (в сильном поле) коррелирует с двумя атомами углерода, что наиболее вероятно для 5 положения гетероцикла. Слабопольный протон 3 коррелирует с 1 и 2 углеродом, а протон 1 коррелирует со 2 и 3 углеродом. Следовательно, остаточный углерод принадлежит углероду при нитрогруппе в имидазоле во 2 положении.

2.4 Синтез и свойства некоторых энергоемких соединений

Как замещенные 5-нитро-1,3-диоксан-5-ил-1*H*-1,2,3-триазолы, так и гетерилзамещенные 3-нитроазетидины, полученные выше, представляют интерес в качестве удобных синтонов для синтеза новых энергоёмких веществ. Для более подробного изучения возможности модификации 5-нитро-1,3-диоксанов были выбраны соединения **4e,i,l** и **8j**. А из 3-нитроазетидинов – **27b**.

Для синтеза полифункциональных нитроэфиров исходные 5-нитро-1,3диоксаны **4e,i,l** и **8j** были модифицированы в 2-нитро-1,3-пропандиолы **16e,i,l**, **63j**, (схема 34):

Полученные таким образом полиспирты нитровали в различных системах, при этом были синтезированы соответствующие нитраты **64** с выходами 33-76% (таблица 26).

Ta	блица	26
----	-------	----

Исходное соединение	Нитрующая смесь	Конечный продукт	Время реакции, ч	Выход, (%) ^[a]
16e	HNO ₃	64e	1.5	27
16e	HNO ₃ /H ₂ SO ₄ 1/1	64e	3	24
16e	HNO ₃ /Ac ₂ O 1/1 CH ₂ Cl ₂	64e	4	46

Схема 34

Исходное соединение	Нитрующая смесь	Конечный продукт	Время реакции, ч	Выход, (%) ^[a]
4e	HNO3 N2O5/CH3CN	64e	7	10
16i	HNO ₃	64i	4	62 (60 [94])
41	HNO3 N2O5/CH3CN	641	6	72 (76 [94])
161	HNO3 H2SO4	641	3	50
161	HNO ₃ /Ac ₂ O 1/1 CH ₂ Cl ₂	641	48	62
65j	HNO ₃ /(CF ₃ C– O) ₂ O 3/1 CH ₂ Cl ₂	64j	25	33

Таблица 26 (Продолжение)

[а] Выход вещества после выделения методом колоночной хроматографии

При нитровании 1,3-пропандиолов 16, 63 азотной кислотой либо серноазотной кислотной смесью выходы целевых нитратов оказались невысокие, как правило, это связано с получением мононитрованного продукта. При использовании системы с уксусным анигдридом (HNO₃/Ac₂O) удалось поднять выход нитрата 64е и 641. Хорошо зарекомендовавшая себя ранее система HNO₃, затем N₂O₅/CH₃CN [94] оказалась неэффективной для получения динитрата 64е, однако показала хороший результат при нитровании 41. Для получения 64j была взята смесь HNO₃/(CF₃CO)₂O, но выход не превысил 33%.

Полученные полинитраты представляют собой вязкие жидкости. В ИК спектре наблюдаются полосы характерные для симметричных и ассиметричных колебаний С и О нитрогрупп: 1666 (_{as}ONO₂); 1281 (_sONO₂); 1582 (_{as}NO₂); 1384 (_sCNO₂).

Анализ некоторых энергетических характеристик, полученных полифункциональных нитроэфиров, показал, что увеличение числа нитратных

групп приводит к повышению термической стабильности молекулы. По всей видимости, термостабильность этих соединений определяется стабильностью нитратной группы, как в случае нитрогицерина, который начинает разлагаться при 165°C и достигает к 200°C интенсивного разложения [151]. Введение тетразольного заместителя (соединение **64**j) не привело к увеличению стабильности молекулы (таблица 27):

Соединение	ρ (г/см ³)	Т _{н.разл} ° С	Т _{макс.разл} ° С	∆Н _f , ккал/моль	КБ,%	D, м/с	Q _v , ккал/кг
0 ₂ N N ONO ₂ ONO ₂ 64e	1.61	119	147	-10.34	-28.76	8036	1505
0 ₂ N N ONO ₂ ONO ₂ ONO ₂ 64i	1.8	159	165	-1.22	-20.40	8690	1550
0 ₂ N N ONO ₂ ONO ₂ ONO ₂ ONO ₂ 641	1.81	150	170	-23.62	-14.90	8700	1560
0 ₂ N N N 0NO ₂ ONO ₂ 64j	1.82	130	145	-16	-14.3	8608	1379
ONO ₂ ONO ₂ ONO ₂	1.59	135	143	-335	+3.5	7721	1510

Таблица 27

[а] Данные для соединений 64і и 64І взяты из работы [94]

Наиболее интересным представителем полученных нитроэфиров является 2-{4,5-бис[нитроксиметил]-1*H*-1,2,3-триазол-1-ил}-2-нитропропан-1,3диолдинитрат (**64**I), впервые описанный в работе [94]. По скорости горения он в 2

раза превосходит нитроглицерин (данные В.Ю. Егоршева, кафедра ХТОСА, РХТУ им. Д.И. Менделеева) (рисунок 12):

Рисунок 12

Одной из ключевых характеристик пластификатора является температура стеклования. Ее определение провели на приборе METTLER TOLEDO DSC 822^{е.}. Полученная термограмма представлена на рисунке 13:

Рисунок 13

Для сравнения была сделана термограмма нитроглицерина (рисунок 14):

Оказалось, что температура стеклования для **641** в два раза меньше температуры стеклования нитроглицерина. Однако, в отличие от нитроглицерина, который кристаллизуется при -30°C, для этого соединения не удалось получить кристаллического состояния. Таким образом, можно отметить, что **641** может использоваться как индивидуальный пластификатор, либо как компонент смесевого пластификатора с другими нитроэфирами.

Для сравнения энергетических характеристик динитроазетидинов, описанных в работе [94], был синтезирован 2-(1,3-динитроазетидин-3-ил)-2*H*-тетразол (**65**) (схема 35):

Схема 35

В качестве нитрующей смеси использовалась система HNO₃/(CF₃CO)₂O в мольном соотношении 3:1, которая ранее неплохо себя зарекомендовала.

Анализ расчётных и экспериментальных данных азетидина **65** с ранее описанным соединением **66** показал, что термическая стабильность триазольной структуры **66** немного выше, чем тетразольной **65**, а расчётные энергоемкие характеристики имеют близкие значения (таблица 28):

Таблица	28
---------	----

Соединение	$\rho_{MK}, \Gamma/cM^3$	Тпл, °С	Т _{н.разл} ° С	Т _{макс.разл} ° С	$\Delta H_{\rm f}^0$,	КБ,%	D,	Q_v ,
N N					KRdJI/ MOJID		IVI/ C	KKdJI/ KI
$ \overset{O_2N}{\underset{NO_2}{\overset{N-N}}{\overset{N-N}}{\overset{N-N}}{\overset{N-N}}}}}}}}}}$	1.702	153- 155	155	166	95	-48.3	8256	1400
65								
	1.74	136- 137	173	180	77	-67.3	8116	1440

2.5 Фунгицидная и антибактериальная активность некоторых соединений

Противогрибковые препараты, своей содержащие в структуре как имидазольные, так И триазольные гетероциклы, такие как бифоназол, клотримазол, кетоконазол и флуконазол, широко используются в клинической грибковых [152-154]. практике для лечения инфекций Считается, что имидазольное кольцо может эффективно координироваться с ионом железа (II) гема, чтобы сдерживать биосинтез эргостерола, таким образом ингибируя рост грибов [155].

Изучив структуры различных противогрибковых препаратов, как в комбинации с галогензамещенными ароматическими остатками, так и без них, было обнаружено, что большинство содержат 1*H*-имидазол, а также 1*H*-1,2,4-триазол. Однако, нет информации о системе, которая содержит 1*H*-1,2,3-триазол в четвертом положении имидазольного цикла.

2.5.1 Фунгицидная активность

Испытания на фунгицидную активность соединений проводили в экспериментах *in vitro* [156].

препаратов Действие на радиальный рост мицелия определяли растворением соединения в ацетоне и внесением аликвоты в картофелесахарозный агар при 50°С до концентрации 30 мг/л по действующему веществу. Конечная концентрация ацетона в контрольных растворах и в растворах с действующими веществами составила 1%. В чашки Петри, содержащие 15 мл агаровой среды наносили иглой культуры грибов на агаровую поверхность. Образцы выдерживали в инкубаторе при 25°С и измеряли радиальный рост через 3 суток. Процент ингибирования рассчитывали по Эбботу по отношению к необработанному контролю. В качестве эталона использовали коммерческий фунгицид триадимефон в той же концентрации. Результаты испытаний представлены в таблице 29:

Соединение	Подавление развития микроорганизмов ^[b] , %						
	<i>R.s.</i>	<i>F.o.</i>	<i>F.m</i> .	<i>F.g.</i>	<i>S.s</i> .	V.i.	<i>B.s.</i>
32a	23	13	3	20	3	1	1
32b	53	14	11	20	10	3	2
32c	35	12	20	14	15	20	15
32d	55	17	48	44	66	30	45
32e	49	28	53	53	29	42	36
32f	45	29	29	57	16	45	53
32g	78	47	36	68	16	62	68
32h	88	60	65	66	27	49	70
32i	46	22	33	26	10	56	38
32ј	46	11	17	14	5	25	35
32k	41	19	33	51	11	33	65
321	34	0	12	20	4	-	-
25h	58	6	30	-	-	24	8
29h	67	37	46	-	16	38	22
Триадимефон ^[а] (эталон)	43	77	87	78	61	41	44

Таблица 29

[а] Триадимефон – 3,3-диметил-1-(1,2,4-триазол-1-ил)-1-(4-хлорфенокси)-бутанон-2.

[b] Обозначения фитопатогенных грибов: R.s. – Rhizoctonia solani, F.o. – Fusarium oxysporum, F.m. – Fusarium moniliforme, F.g. –Fusarium graminearum, S.s. — Sclerotinia sclerotiorum, V.i. – Venturia inaequalis, B.s. – Bipolaris sorokiniana.

Исследованные соединения **32а-k**, **25h** и **29h** оказались несколько активнее или чуть уступали в той или иной степени триадимефону в отношении трех видов грибов (*R.s.*, *V.i.*, *B.s.*) [157].

Активность соединений 32a-с, m заметно ниже, чем у соединений 32d-k по отношению ко всем видам грибов, за исключением возбудителей ризоктониоза R.s. Отсутствие ИЛИ наличие в четвертом положении 1*H*-1,2,3-триазола таких заместителей, как триметилсилил, циклопропил и 1-бензилпиперидин, приводит к снижению фунгитоксичности, что говорит о бесперспективности их применения в качестве противогрибковых препаратов. Однако, если в качестве заместителя в четвертом положении 1H-1,2,3-триазола появляется ароматическая группа 32d-k, то наблюдается существенный рост фунгицидной активности. Наиболее активным в данном ряду оказалось соединение 32h, поэтому для его прекурсоров также было проведено испытание на фунгитоксичность, но ни исходный азетидин 25h, ни 2,5дигидроимидазол 29h не показали высоких результатов.

2.5.2 Противомикробная активность

Исследование противомикробной активности проводилось в университете Квинсленда, Австралия. Первичный антимикробный скрининг был сделан с помощью анализа ингибирования роста клеток с использованием предоставленых образцов в одной концентрации 32 мкг/мл, 0.3%, при двукратной повторности. Ингибирование роста измеряли в отношении 5 бактерий: *Staphylococcus aureus (S.a.), Escherichia coli (E.c.), Klebsiella pneumoniae (K.p.), Acinetobacter baumannii (A.b.), Pseudomonas aeruginosa (P.a.),* а также двух грибов: *Candida albicans (C.a.)* и *Cryptococcus neoformans (C.n.)*.

Ингибирование роста бактерий определяли измерением поглощения при 600 нм (OD600). Процент роста ингибирования рассчитывали для каждой лунки, используя отрицательный контроль (только для сред) и положительный контроль (бактерии без ингибиторов) в качестве референса. Значения ингибирования определяли по Z-показателям, рассчитанным с использованием среднего и стандартного отклонения лунки для образцов (без контроля) на одной пластине. Образцы со значением ингибирования выше 80% и Z-показателем выше 2.5 для двух повторяющихся опытов (n = 2 в разных платах) были классифицированы как активные.

Ингибирование роста Candida albicans (C.a.) определяли путем измерения поглощения при 530 нм (OD 530), в то время как ингибирование роста *Cryptococcus* neoformans определяли, измеряя разницу в оптической плотности от 600 до 570 нм (OD 600-570) после добавления ресазурина (0.001% конечная концентрация) и инкубации при 35°C в течение дополнительных 2 часов. Процент ингибирования роста рассчитывали для каждой лунки, используя отрицательный контроль (только для сред) и положительный контроль (грибы без ингибиторов) на той же плате. определяли Z-показателям, Значения ингибирования ПО рассчитанным с использованием среднего и стандартного отклонения лунки для образцов (без контроля) на одной пластине. Образцы со значением ингибирования выше 80% и Zпоказателем выше 2.5 для двух повторяющихся опытов (n = 2 в разных платах) были классифицированы как активные вещества (таблица 30):

таолина э	U
-----------	---

Соединение		Ингибирование, % (C=32 µg/mL, 0.3%)					
	Sa	Ec	Кр	Ab	Pa	Ca	Cn
32a	25.33	-4.76	6.38	7.84	3.51	4.27	-93.86
32b	11.92	-6.87	4.78	8.14	3.55	10.01	-92.92
32c	10.72	-7.49	9.57	7.79	7.71	3.45	-90.32
32d	2.26	-12.21	-5.21	3.26	3.62	-0.24	-93.86
32e	5.03	-2.25	5.16	7.03	16.42	6.59	-52.07
32f	13.46	-3.81	-2.91	-1.49	15.68	0.99	-48.05
32g	18.97	-8.56	1.08	6.57	11.21	1.88	-95.51
32h	0.79	-11.06	-9.72	-7.38	5.56	8.16	-122.20
32j	11.82	-4.50	6.37	7.01	6.25	2.22	-101.18
59	7.97	1.19	25.41	26.21	8.30	6.25	-134.47
60	30.68	-4.25	15.19	10.28	7.99	6.55	-90.48
81	26.36	5.45	29.78	19.37	15.51	0.78	-82.47
27a	35.15	5.95	29.79	21.27	1.42	0.2	-59.79

Caammanna	Ингибирование, % (C=32 µg/mL, 0.3%)						
Соединение	Sa	Ec	Кр	Ab	Pa	Ca	Cn
28a	-3.88	-10.97	-10.89	13.2	-39.72	4.53	-6.49
27b	26.36	0.29	26.56	20.59	-12.55	3.39	-101.3
28b	35.23	5.85	14.39	16.18	-28.29	0.83	-70.87

Таблица 30 (Продолжение)

Колистин и Ванкомицин использовали в качестве стандартов ингибирования для грамотрицательных и грамположительных бактерий, соответственно. Флуконазол использовали в качестве стандарта ингибирования грибов *Candida albicans (C.a.)* и *Cryptococcus neoformans (C.n.)*.

После анализа полученных данных оказалось, что испытуемые молекулы не обладают противомикробной активностью как в отношении грамотрицательных, так и грамположительных бактерий, а также грибов в условиях проведенного тестирования. Большинство соединений показали противоположный результат в отношении гриба *Cryptococcus neoformans (C.n.)*, то есть способствовали его размножению.

2.6 ЯМР спектроскопия продуктов дезоксигенирования 2.6.1 2,5-Дигидро-1*Н*-имидазолы

Строение новых 2,5-дигидро-1*H*-имидазолов было подтверждено методами ЯМР спектроскопии (¹H, ¹³C, ¹⁵N). Спектры ¹H и ¹³C-ЯМР записывали в ДМСО-d₆ и в CDCl₃, ¹⁵N – в нитрометане, либо в жидком аммиаке. Резонансные сигналы метиленовых протонов в ¹H-ЯМР спектре смещаются в слабое поле и имеют более сложный характер, чем у исходных азетидинов. Нарушение симметрии цикла приводит к магнитной неэквивалентности протонов и поэтому они проявляются в виде триплетов (картина идентична 4,7-дигидро-1,3,5-диоксазепинам). При этом константа спин-спинового взаимодействия ⁴*J* оказалась неожиданно большой и составляет для всего ряда соединений ⁴*J* = 4.8 Гц. В ¹³С-ЯМР спектре присутствуют резонансные сигналы в слабом поле в районе 150-160 м.д., что указывает на изменение гибридизации атома углерода в четвертом положении имидазольного цикла. При помощи двумерных спектров были получены корреляции атомов H-C-N, для этого в качестве модельного соединения был выбран 1-(1-*mpem*-бутил-2,5дигидро-1*H*-имидазол-4-ил)-4-фенил-1*H*-1,2,3-триазол (**29d**) (рисунок 15):

Рисунок 15

HSQC спектр позволил отнести сигналы протонов и незамещенных углеродов для 2 и 5 положений (4.27 (52.0) м.д. и 4.81 (74.3) м.д. соответственно) дигидроимидазольного цикла, а также однозначно отнести сигнал, характерный для 5-положения 1,2,3-триазола (9.23 (118.5) м.д.). В спектре ¹H-¹⁵N HMBC соединения **29d**, наряду с корреляцией протона триазольного кольца (9.23м.д.) со всеми тремя атомами азота триазола (255.1, 355.3, и 363.8 м.д.), обнаруживается корреляция метиленовых протонов 2 и 5 положений с азотом в положении 1 (55.7 м.д.), а также метиленовые протоны пятого положения дигидроимидазола коррелируют с азотом в положении 3 (283.2 м.д.) (рисунок 16):

Таблица 31

lu s	¹³ С, б, м.д.	¹⁵ N, δ, м.д.
11, 0	HSQC	HMBC
1.09	25.8	55.7
4.27	52.0	55.7; 283.2
4.81	74.3	55.7
7.39	128.9	-
7.47	129.4	-
8.00	125.7	-
9.23	118.5	255.1; 355.3; 363.8

2.6.2 4,7-Дигидро-1,3,5-диоксазепины

Строение 4,7-дигидро-1,3,5-диоксазепинов было подтверждено методами ЯМР спектроскопии (¹H, ¹³C, ¹⁵N). Спектры ¹H и ¹³C ЯМР записывали в ДМСО-d₆ и в CDCl₃, ¹⁵N – в нитрометане, либо в жидком аммиаке. В данном разделе для нумерации атомов диоксазепинового цикла используется следующий способ: атомы в основном цикле нумеруются согласно номенклатуре IUPAC. Для примера ниже приведена нумерация для соединения **36e** (рисунок 17):

Рисунок 17

В ¹Н-ЯМР спектрах следует отметить необычный характер сигнала метиленовых протонов у атомов углерода С4 и С7. Несмотря на ассиметричный вид молекулы, в спектре наблюдаются два симметричных триплета 5.20 и 5.38 м.д. с константой спин-спинового взаимодействия ⁵J=1.8 Гц (рисунок 18). В ¹³С-ЯМР спектрах в области слабого поля, наряду с резонансными сигналами атомов углерода вицинального триазола, обнаруживается сигнал в интервале 152-153 м. д.

Рисунок 18

помощиспектра $^{1}\text{H}-^{13}\text{C}$ HMBC спиродиоксазепина было При **36i** установлено, что сигнал атома углерода С-9 с химическим сдвигом 152.1 м.д. коррелирует с сигналами метиленовых протонов 7-СН₂ и 10-СН₂ 4,7-дигидро-1,3,5-диоксазепинового кольца (5.40 и 5.19 м.д. соответственно). В спектре ¹H-¹⁵N НМВС соединения 36і, на ряду с корреляцией протона триазольного кольца (9.00 м.д.) со всеми тремя атомами азота триазола (264, 353 и 359 м.д.), обнаруживается корреляция метиленовых протонов 4,7-дигидро-1,3,5-диоксазепинового цикла с атомом азота, имеющим химический сдвиг 288 м.д. (таблица 31). Полученные результаты свидетельствуют об изменении гибридизации атома углерода, находящегося рядом с метиленовыми группами (CH₂O), и появлении в структуре иминиевого фрагмента C=N.

цѕ		¹⁵ Ν, δ, м.д.	
п, о	HSQC	HMBC	HMBC
1.66	23.3	23.3; 34.8; 114.7	-
1.89	34.8	23.3; 34.8; 114.7	-
5.19	62.2	62.2; 114.7; 152.1	288
5.40	75.2	75.2; 114.7; 152.1	288
7.36	128.5	125.6	-
7.44	128.9	125.6; 128.9; 129.6; 146.8	-
7.95	125.6	125.6; 128.5; 146.8;	-
9.00	118.1	118.1; 146.8	264; 353; 359

таолица э

2.7 Рентгеноструктурный анализ

2.7.1 2,5-Дигидро-1Н-имидазолы

Окончательное подтверждение структуры новых гетероциклических соединений было выполнено методом рентгеноструктурного анализа. Однако, ввиду высокой лабильности 2,5-дигидроимидазолов как на воздухе, так и в различных растворах, кристалл целевого продукта вырастить не удалось. Поэтому данные о строении молекулы **29d** получены с помощью дифрактометра Bruker (рисунок 19):

Рисунок 19

Образец порошка **29d** измеряли на дифрактометре Bruker D8 Advance Vario с детектором LynxEye и монохроматором Ge (111), λ (CuK α 1)=1.54060 Å, сканирование $\theta/2\theta$ от 7.0° до 90°, размер шага 0.009169°, в режиме передачи с образцом, помещенным между пленками Mular.

Шаблон был проиндексирован с использованием SVD-Index [158], как это реализовано в программном обеспечении TOPAS 5.0 [159]. Модель для решения и уточнения была подготовлена на основе PBE/L2 [160] расчета SK90 с использованием программного обеспечения PRIRODA [161]. Решение было получено с использованием метода параллельной закалки, реализованного в FOX [162], и Ритвельда, уточненного в TOPAS 5.0. Структура соединения была усовершенствована с использованием мягких (параболических) ограничений. Распределение отклонений длин связей от ограниченных значений (Δd) не содержало выбросов, что указывает на непротиворечивую структурную модель в

соответствии с подходом, изложенным в [163]. Изменяя ограничения отдельных связей, пока они не привели к выбросам, было оценено среднее окно половинной неопределенности для уточнения как HUW = 0.09(6) Å [164].

Данные кристалла 29d. $C_{15}H_{19}N_5$ (M = 269.35 г/моль): triclinic, spacegroup P-1 (no. 14), (no. 2), a = 8.77833(12) Å, b = 8.8449(1) Å, c = 9.80186(16) Å, a =89.2590(8), $\beta = 77.6741(11)$, $\gamma = 84.7478(8)$, V = 740.369(18) Å³, Z = 2, T = 298K, μ (CuK α ~1~) = 0.601 mm⁻¹, *Dcalc* = 1.208 г/см³. At average Δd of 0.01 Å (K₁ = 20) the $Rp/R_P'/R_{WP}/R_{WP}'/R_{Bragg}$ refinement converged values of to with R_{exp}/R_{exp} of 1.351/5.009%, 2.658/20.76/4.322/16.03/1.847% GOF=3.200 (рисунок 20):

Рисунок 20

	Длины связей в молекуле 29d							
Атом	Атом	Длина, Å	Атом	Атом	Длина, Å			
C1	C2	1.3990	N10	N11	1.4302			
C1	C3	1.4051	N10	C12	1.4615			
C2	C4	1.4100	C12	N13	1.3265			
C3	C6	1.4044	C12	C14	1.5484			
C4	C5	1.4112	N13	C15	1.4482			
C4	C7	1.4132	C14	N16	1.4808			
C5	C6	1.4010	C15	N16	1.4782			
C7	C8	1.4343	N16	C17	1.4741			
C7	N9	1.4194	C17	C18	1.5778			
C8	N10	1.3920	C17	C19	1.5902			
N9	N11	1.3244	C17	C20	1.6187			
блина 34	•	•		•	•			

Величины углов в молекуле 29d							
Атом	Атом	Атом	Угол, °	Атом	Атом	Атом	Угол, °
C2	C1	C3	120.03	N9	N11	N10	106.46
C1	C2	C4	120.5	N10	C12	N13	117.47
C1	C3	C6	119.86	N10	C12	C14	119.1
C2	C4	C5	119.18	N13	C12	C14	113.98
C2	C4	C7	120.32	C12	N13	C15	106.14
C5	C4	C7	120.39	C12	C14	N16	98.84
C4	C5	C6	120.25	N13	C15	N16	108.87
C3	C6	C5	120.18	C14	N16	C15	108
C4	C7	C8	128.72	C14	N16	C17	118.38
C4	C7	N9	120.3	C15	N16	C17	116.32
C8	C7	N9	107.78	N16	C17	C18	107.37
C7	C8	N10	103.02	N16	C17	C19	105.17
C7	N9	N11	107.79	N16	C17	C20	114.82
C8	N10	N11	110.49	C18	C17	C19	111.54
C8	N10	C12	128.05	C18	C17	C20	106.51
N11	N10	C12	120.06	C19	C17	C20	111.45

Данные о структуре внесены в базу Кембриджского кристаллографического центра под номером CCDC 1554112.

2.7.2 1Н-Имидазолы

В отличие от 2,5-дигидроимидазолов, 1*Н*-имидазолы **32**, стабильны как на воздухе, так и в различных растворителях. Окончательное подтверждение структуры было сделано на примере кристалла соединения **32d** (рисунок 21):

Рисунок 21

Структура соединения **32d** в кристалле. Атомы представлены тепловыми эллипсоидами (p = 50%). Структура абсолютно планарна, торсионный угол C(15)-N(13)-C(12)-C(14) составляет (-0.1). Кроме того, величины длин связей, а так же

Данные кристалла 32d					
Empirical formula	$C_{15}H_{17}N_5$				
Formula weight	267.34				
Temperature/K	373.15				
Crystal system	Monoclinic				
Space group	P21/n				
a/Å	5.8361(12)				
b/Å	10.472(2)				
c/Å	22.926(5)				
$\alpha/^{\circ}$	90.00				
β/°	95.47(3)				
$\gamma^{ m o}$	90.00				
Volume/Å ³	1394.8(5)				
Z	4				
$\rho_{calc}mg/mm^3$	1.273				
m/mm ⁻¹	0.081				
F(000)	568.0				
Crystal size/mm ³	$0.27 \times 0.23 \times 0.21$				
2Θ range for data collection	3.56 to 62.18°				
Index ranges	$-5 \le h \le 7, -12 \le k \le 15, -21 \le l \le 33$				
Reflections collected	6160				
Independent reflections	3238[R(int) = 0.0196]				
Data/restraints/parameters	3238/0/184				
Goodness-of-fit on F ²	1.033				
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0405, wR_2 = 0.1035$				
Final R indexes [all data]	$R_1 = 0.0530, wR_2 = 0.1\overline{113}$				
Largest diff. peak/hole / e Å ⁻³	0.28/-0.27				

Таблица 35

Таблица 36

Длины связей в молекуле 32d							
Атом	Атом	Длина, Е	Атом	Атом	Длина, Е		
N3	C8	1.3511(16)	N2	N1	1.3105(17)		
N3	N2	1.3516(14)	C9	C10	1.3612(17)		
N3	C9	1.4051(19)	C9	N4	1.3598(16)		
N5	C12	1.4833(16)	C15	C12	1.5284(16)		
N5	C10	1.3802(16)	C12	C14	1.5296(17)		
N5	C11	1.3487(15)	C12	C13	1.5249(16)		
C8	C7	1.3635(18)	C6	C5	1.3969(17)		
C4	C5	1.381(2)	C6	C1	1.398(2)		
C4	C3	1.387(2)	N4	C11	1.3129(19)		
C7	C6	1.4630(19)	C1	C2	1.385(2)		
C7	N1	1.3625(15)	C2	C3	1.385(2)		

Величины углов в молекуле 32d							
Атом	Атом	Атом	Угол, °	Атом	Атом	Атом	Угол, °
C8	N3	N2	110.46(11)	N5	C12	C14	109.29(9)
C8	N3	C9	126.97(10)	N5	C12	C13	108.37(9)
N2	N3	C9	122.55(10)	C15	C12	C14	111.03(10)
C10	N5	C12	125.97(9)	C13	C12	C15	110.60(10)
C11	N5	C12	127.57(11)	C13	C12	C14	109.85(11)
C11	N5	C10	106.43(11)	C5	C6	C7	120.76(12)
N3	C8	C7	105.15(11)	C5	C6	C1	118.45(12)
C5	C4	C3	120.19(13)	C1	C6	C7	120.79(11)
C8	C7	C6	129.87(11)	N2	N1	C7	109.32(10)
N1	C7	C8	108.09(11)	C9	C10	N5	104.72(10)
N1	C7	C6	122.04(11)	C4	C5	C6	120.83(13)
N1	N2	N3	106.97(10)	C11	N4	C9	104.09(11)
C10	C9	N3	129.80(11)	C2	C1	C6	120.53(13)
N4	C9	N3	118.37(11)	N4	C11	N5	112.93(12)
N4	C9	C10	111.82(13)	C1	C2	C3	120.32(15)
N5	C12	C15	107.62(10)	C2	C3	C4	119.67(14)

Таблица 37

Данные о структуре внесены в базу Кембриджского кристаллографического центра под номером CCDC 1554111.

2.7.3	4,7-	Дигидр)0-1,3,5	5-диоі	ссазепины
-------	------	--------	----------	--------	-----------

Рентгеноструктурный анализ продуктов **36h** и **36k** показал, что 4,7-дигидро-1,3,5-диоксазепиновый цикл находится в конформации твист–кресло (рисунок 22, 23), в обеих структурах торсионный угол C2–N1–C3–C4 близок к 0 (-2.6(5) в **36h** и -5.87(17) в **36k**). Связь C=N практически копланарна фенилтриазольному фрагменту: диэдральный угол между плоскостью триазольного кольца и плоскостью, образованной атомами N1–C3–N2, составляет 5.38(18)° в **36h** и 16.45(10)° в **36k**. При этом связь C3–N2 (длина связи 1.432(4) Å в **36h** и 1.4333(13) Å в **36k**) одинарная, а C3–N1 двойная (длина связи 1.265(4) Å в **36h** и 1.2597(14) Å в **36k**). Таким образом, можно утверждать, что сопряжение связи C3=N1 с фенилтриазольным фрагментом отсутствует. Межмолекулярные взаимодействия в кристаллах обоих соединений представлены CH…O и CH…N контактами.

Структура соединения **36h** в кристалле. Атомы представлены тепловыми эллипсоидами (p=50%). Данные для **36h** представлены в виде таблиц с длинами связей и величинами углов:

Габлица 38					
Данны	е кристалла 36h				
Empirical formula	C ₁₄ H ₁₆ N ₄ O ₂				
Formula weight	272.31				
Temperature/K	100				
Crystal system	Orthorhombic				
Space group	Pbca				
a/Å	9.132(3)				
b/Å	14.614(5)				
c/Å	20.428(7)				
α/°	90				
β/°	90				
γ/°	90				
Volume/Å ³	2726.0(16)				
Z	8				
$\rho_{calc}mg/mm^3$	1.3269				
m/mm ⁻¹	0.092				
F(000)	1152.5				
Crystal size/mm ³	$0.35 \times 0.32 \times 0.3$				
Radiation	MoKα ($\lambda = 0.71073$)				
2Θ range for data collection	3.98 to 56.56°				
Index ranges	$-12 \le h \le 12, -20 \le k \le 20, -24 \le l \le 28$				
Reflections collected	18877				
Independent reflections	3374[R(int) = 0.1014]				
Data/restraints/parameters	3374/0/182				
Goodness-of-fit on F ²	1.077				
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0839, wR_2 = N/A$				
Final R indexes [all data]	$R_1 = 0.1184, wR_2 = 0.2435$				
Largest diff. peak/hole / e Å ⁻³	0.67/-0.61				

Таблица 38

Длины связей в молекуле 36h							
Атом	Атом	Длина, Å	Атом	Атом	Длина, Å		
01	C4	1.429(3)	C4	C3	1.525(4)		
01	C1	1.436(3)	C8	C7	1.409(4)		
O2	C1	1.433(3)	C8	С9	1.394(4)		
O2	C2	1.426(3)	C1	C14	1.520(4)		
N3	N2	1.362(3)	C1	C13	1.518(4)		
N3	N4	1.311(4)	C7	C12	1.396(4)		
N2	C3	1.434(4)	C7	C5	1.466(4)		
N2	C6	1.357(4)	C6	C5	1.371(4)		
N1	C3	1.264(4)	C12	C11	1.395(4)		
N1	C2	1.455(4)	C9	C10	1.395(5)		
N4	C5	1.383(4)	C11	C10	1.397(5)		

Таблица 39

Таблица 40

Величины углов в молекуле 36h							
Атом	Атом	Атом	Угол, °	Атом	Атом	Атом	Угол, °
C1	01	C4	115.7(2)	C13	C1	01	112.9(2)
C2	02	C1	115.3(2)	C13	C1	O2	104.8(2)
N4	N3	N2	107.2(2)	C13	C1	C14	112.0(3)
C3	N2	N3	121.3(2)	C12	C7	C8	118.9(3)
C6	N2	N3	110.6(2)	C5	C7	C8	120.4(3)
C6	N2	C3	128.0(2)	C5	C7	C12	120.6(3)
C2	N1	C3	120.5(3)	C5	C6	N2	105.2(3)
C5	N4	N3	109.1(2)	C11	C12	C7	120.6(3)
C3	C4	01	110.5(2)	C10	C9	C8	120.6(3)
N1	C3	N2	115.3(3)	C7	C5	N4	121.1(3)
C4	C3	N2	115.0(2)	C6	C5	N4	107.9(3)
C4	C3	N1	129.7(3)	C6	C5	C7	131.0(3)
C9	C8	C7	120.2(3)	N1	C2	O2	115.2(2)
O2	C1	01	109.3(2)	C10	C11	C12	120.4(3)
C14	C1	01	105.3(2)	C11	C10	C9	119.3(3)
C14	C1	02	112.7(2)				

Данные о структуре внесены в базу Кембриджского кристаллографического центра под номером CCDC2052839.

Структура соединения **36k** в кристалле. Атомы представлены тепловыми эллипсоидами (p = 50%). Атомы водорода CH₂ групп C13–C17 не отображены. Данные для **36k** представлены в виде таблиц с длинами связей и величинами углов:

Габлица 41						
Данные	Данные кристалла 36k					
Empirical formula	$C_{17}H_{20}N_4O_2$					
Formula weight	312.37					
Temperature/K	120					
Crystal system	Monoclinic					
Space group	P2 ₁ /n					
a/Å	5.6366(3)					
b/Å	14.4327(8)					
c/Å	18.6719(10)					
α/°	90					
β/°	91.778(1)					
γ/°	90					
Volume/Å ³	1518.25(14)					
Z	4					
$\rho_{calc}mg/mm^3$	1.3665					
m/mm ⁻¹	0.093					
F(000)	664.3					
Crystal size/mm ³	0.31 imes 0.3 imes 0.25					
Radiation	MoKa ($\lambda = 0.71073$)					
2Θ range for data collection	3.56 to 61.02°					
Index ranges	$-8 \le h \le 8, -21 \le k \le 21, -28 \le l \le 27$					
Reflections collected	21317					
Independent reflections	4614[R(int) = 0.0338]					
Data/restraints/parameters	4614/0/267					
Goodness-of-fit on F ²	1.071					
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0450, wR_2 = N/A$					
Final R indexes [all data]	$R_1 = 0.0552, wR_2 = 0.1165$					
Largest diff. peak/hole / e Å-3	0.29/-0.43					

Таблина 41

Длины связей в молекуле 36k										
Атом	Атом	Длина, Å	Атом	Атом	Длина, Å					
O2	C1	1.4279(12)	C7	C8	1.3975(15)					
O2	C4	1.4152(12)	C7	C12	1.3958(15)					
01	C2	1.4178(13)	C6	C5	1.3769(15)					
01	C1	1.4260(12)	C13	C1	1.5263(14)					
N2	N3	1.3613(12)	C13	C14	1.5311(16)					
N2	C3	1.4333(13)	C8	C9	1.3933(16)					
N2	C6	1.3578(13)	C12	C11	1.3918(15)					
N4	N3	1.3088(13)	C1	C17	1.5246(15)					
N4	C5	1.3806(13)	C10	C11	1.3875(17)					
N1	C3	1.2597(14)	C10	C9	1.3922(17)					
N1	C2	1.4622(14)	C14	C15	1.5278(17)					
C3	C4	1.5142(15)	C17	C16	1.5284(17)					
C7	C5	1.4691(14)	C15	C16	1.5293(17)					

Таблица 42

Таблица 43

Величины углов в молекуле 36к											
Атом	Атом	Атом	Угол/°	Атом	Атом	Атом	Угол/°				
C4	O2	C1	115.67(8)	C6	C5	N4	108.01(9)				
C1	01	C2	114.99(8)	C6	C5	C7	130.67(10)				
C3	N2	N3	121.03(8)	С9	C8	C7	120.36(11)				
C6	N2	N3	110.99(8)	C11	C12	C7	120.30(10)				
C6	N2	C3	127.92(9)	01	C1	O2	109.13(8)				
C5	N4	N3	109.33(9)	C13	C1	O2	105.37(8)				
N4	N3	N2	107.02(8)	C13	C1	01	112.28(9)				
C2	N1	C3	118.97(9)	C17	C1	O2	112.96(9)				
N1	C3	N2	116.12(9)	C17	C1	01	106.66(8)				
C4	C3	N2	113.15(9)	C17	C1	C13	110.55(9)				
C4	C3	N1	130.73(10)	С9	C10	C11	119.90(10)				
C8	C7	C5	120.07(10)	C15	C14	C13	111.59(10)				
C12	C7	C5	120.73(10)	C3	C4	O2	111.13(9)				
C12	C7	C8	119.18(10)	C10	C11	C12	120.24(11)				
C5	C6	N2	104.64(9)	C10	C9	C8	119.95(11)				
N1	C2	01	113.69(9)	C16	C17	C1	111.27(9)				
C14	C13	C1	111.30(9)	C16	C15	C14	111.29(10)				
C7	C5	N4	121.28(9)	C15	C16	C17	110.89(10)				

Данные о структуре внесены в базу Кембриджского кристаллографического центра под номером CCDC 2052840.

Глава 3. Экспериментальная часть

Температуры плавления были определены на нагревательном столике Boetius. ИК спектры зарегистрированы на приборе Thermo Nicolet 360 FTIR в таблетках КВг. Спектры ЯМР¹H, ¹³С и ¹⁵N записаны на приборах: Varian Mercury Plus (400 МГц и 100 МГц соответственно) и Bruker Avance II (300 МГц и 75 МГц соответственно). Химические сдвиги указаны в миллионных долях (м.д.), растворители (DMSO-d₆, CDCl₃ и Aceton-d₆) использовались в качестве внутреннего стандарта. ЖХ/МС анализ был сделан на приборе Thermo Finnigan Surveyor MSQ в условиях градиентного элюирования и химической ионизации при атмосферном давлении с одновременной регистрацией положительно и отрицательно заряженных ионов, колонка Phenomenex Onyx Monoliythic C18 25×4.6 мм, растворитель для образца - ацетонитрил, подвижная фаза: А – 0.1% раствор муравьиной кислоты, В – ацетонитрил, температура колонки 25°С, скорость подвижной фазы 1.5 мл/мин. ГХ/МС анализ был сделан на приборе Trace 1310/ISQ-LT (ThermoScientific) с использованием колонки TG-SQC (15 m, 0.25 mm, 0.25 µm). Метод ионизации – ЕІ (электронный удар), регистрация положительных ионов, диапазон масс: 1.2-1100 а.е.м. Элементный анализ выполнен на CHN-анализаторе Perkin Elmer 2400 серии II. Масс-спектры HRMS записаны на приборе Bruker Daltonics MicroTOF II [метод ионизации электрораспыление (ESI)]. Монокристальные эксперименты для отобранных кристаллов соединений **29d**, **32d**, **36h** и **36k** были сделаны при температуре 100К на дифрактометре Bruker APEX-IICCD. Контроль за протеканием реакций и чистотой полученных соединений проводили тонкослойной методом хроматографии на пластинах Sorbfil ПТСХ-АФ-А-УФ (Россия) и DC-Alufoilen Kieselgel 60 F254 0.2 мм (Германия). Проявители – пары йода, 1%-ный раствор 2,2-дигидроксииндан-1,3-диона в ацетоне и реактив Зибаха. Вещества были препаративной хроматографии. Для колоночной очишены метолом хроматографии использовали силикагель Kieselgel 60 (Германия). Для RP-HPLC очистки использовали прибор Gilson Combinatorial Chromatography System c

колонкой Phenomenex Gemini 100×30 мм 10 мк и скоростью потока 30 мл/мин. Все коммерчески доступные реактивы и растворители использовались без предварительной очистки.

Синтез исходных соединений

Соединение 1 синтезировано согласно ранее описанной процедуре [166]. Выход 74.7 г (67%). Спектральные данные совпадают с описанными.

Соединение **2a** синтезировано согласно ранее описанной процедуре [89]. Выход 10.3 г (63%). Спектральные данные совпадают с описанными.

Общая методика получения замещенных (5-нитро-1,3-диоксан-5-ил)метанолов 2b-h. К раствору 2-(гидроксиметил)-2-нитропропан-1,3-диола (1) (12 ммоль) в сухом ТГФ добавляют кетон (или альдегид) (13 ммоль). К полученной смеси при комнатной температуре и перемешивании дозируют $BF_3 \cdot Et_2O$ (12 ммоль). Смесь выдерживают при комнатной температуре в течение 1–3 часов (контроль TCX). По завершении процесса реакционную массу разбавляют насыщенным водным раствором гидрокарбоната натрия и экстрагируют этилацетатом (4×50 мл). Органический слой сушат над Na₂SO₄ и упаривают под вакуумом. Остаток очищают методом препаративной хроматографии на силикагеле. Выход составил 56-88% [91, 167, 168].

Спектральные данные и температуры плавления полученных диоксанов, соответствуют литературным данным.

(2-Метил-5-нитро-2-этил-1,3-диоксан-5-ил)метанол (2f) – смесь стереоизомеров (~1:1, результаты ЯМР). Выход 1.92 г (78%). Т. пл. 50– 62°С. ИК спектр, v, см⁻¹: 1047, 1098 (С–О); 1351, 1547, 1561 (NO₂); 2893, H_3 с 2933, 2950, 2988 (СН); 3384, 3420 (ОН). (2-Метил-5-нитро-цис-2-этил-1,3-диоксан-5-ил)метанол (цис-2f). Спектр ЯМР ¹Н, DMSO-d₆, δ, м.д. (*J*, Гц): 0.77 (3H, т, ³*J* = 7.5, С<u>H</u>₃CH₂); 1.36 (3H, с, CH₃); 1.52 (2H, к, ³*J* = 7.5, CH₃C<u>H</u>₂); 3.70 (2H, д, ³*J* = 5.7, С<u>H</u>₂OH); 4.07 (2H_e, д, ²*J* = 13.2, OCH₂) и 4.37 (2H_a, д, ²*J* = 13.2, OCH₂); 5.46 (1H, т, ³*J* = 5.7, CH₂O<u>H</u>). Спектр ЯМР ¹³C, DMSO-d₆, δ , м.д.: 7.2 (<u>C</u>H₃CH₂); 17.5 (<u>C</u>H₃C); 32.9 (<u>C</u>H₂CH₃); 61.3 (2C-4,6); 62.5 (CH₂OH); 87.9 (C-5); 99.8 (C-2). *(2-Метил-5-нитро-транс-2-этил-1,3-диоксан-5-ил)метанол (транс-2***f**). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 0.82 (3H, т, ³*J* = 7.5, C<u>H</u>₃CH₂); 1.20 (3H, с, CH₃); 1.77 (2H, к, ³*J* = 7.5, CH₃C<u>H</u>₂); 3.75 (2H, д, ³*J* = 5.7, C<u>H</u>₂OH); 4.02 (2H_e, д, ²*J* = 13.2, OCH₂) и 4.31 (2H_a, д, ²*J* = 13.2, OCH₂); 5.48 (1H, т, ³*J* = 5.7, CH₂O<u>H</u>). Спектр ЯМР ¹³C, DMSO-d₆, δ , м.д.: 8.2 (<u>C</u>H₃CH₂); 22.8 (<u>C</u>H₃C); 25.7 (<u>C</u>H₂CH₃); 60.7 (2C-4,6); 62.6 (CH₂OH); 87.1 (C-5); 100.4 (C-2). Масс-спектр, *m*/*z* (*I*_{отн},%): 206 [M+H]⁺ (100) (для обоих изомеров). Найдено, %: C 46.85; H 7.33; N 6.87. C₈H₁₅NO₅. Вычислено, %: C 46.82; H 7.37; N 6.83.

(3-Нитро-1,5-диоксаспиро[5.5]ундец-3-ил)метанол (**2h**). Выход 2.44 г _{02N} он (88%). Т. пл. 95-96°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1056, 1106 (С–О); 1352, 1554 (NO₂); 2856, 2934 (CH); 3403 (OH). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.30-1.53 (8H, м, 4CH₂); 1.76-1.82 (2H, м, CH₂); 3.71 (2H, д, ³*J* = 5.4, С<u>H₂OH</u>); 4.04 (2H_e, д, ²*J*= 13.2, OCH₂), 4.33 (2H_a, д, ²*J* = 13.2, OCH₂), 5.36 (1H, т, ³*J* = 5.4, CH₂O<u>H</u>). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 21.9 и 22.0 (С-8,10); 24.8 (С-9); 28.6 и 34.8 (С-7,11); 60.3 (2С-2,4); 62.4 (CH₂OH); 87.6 (С-3); 98.2 (С-6). Масс-спектр, *m/z* (*I*_{отн},%): 232 [M+H]⁺ (100). Найдено, %: С 51.90; Н 7.38; N 6.07. С₁₀H₁₇NO₅. Вычислено, %: С 51.94; Н 7.41; N 6.06

Общая методика получения геминальных азидонитро-1,3-диоксанов **За-h**. К раствору NaOH (2 г, 50 ммоль) в 10 мл воды прибавляют 10 ммоль 5-гидроксиметил-5-нитро-1,3-диоксана **2а-h** и перемешивают при комнатной температуре в течение 20-30 минут. К полученной смеси быстро добавляют раствор NaN₃ (3.25 г, 50 ммоль) в 10 мл воды и выливают в интенсивно перемешиваемый раствор K_3 [Fe(CN)₆] (16.46 г, 50 ммоль) в 70 мл воды. Реакционную массу перемешивают при комнатной температуре 4 часа и экстрагируют EtOAc (3×20 мл). Объединенный экстракт промывают водой и сушат над Na₂SO₄. Растворитель удаляют при пониженном давлении, а остаток очищают методом колоночной хроматографии на силикагеле (CH₂Cl₂). Выход составил 62-75% [91, Ошибка! Источник ссылки не найден.].

Спектральные данные и температуры плавления полученных диоксанов, соответствуют литературным данным.

3-Азидо-3-нитро-1,5-диоксаспиро[5.5]ундекан (**3h**). Выход 1.815 г (75%). ^{О2}N N₃ Бесцветное масло. ИК спектр, *v*, см⁻¹: 1111 (С–О); 1335, 1557 (NO₂); 2124 (N₃); 2861, 2939 (СН). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.34-1.47 (6H, м, 3CH₂); 1.66-1.78 (4H, м, 2CH₂); 4.16 (2H_e, д, ²*J* = 12.8, OCH₂); 4.46 (2H_a, д, ²*J* = 12.8, OCH₂). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 21.9 (2С-8,10); 24.6 (С-9); 31.5 и 31.9 (С-7,11); 61.4 (2С-2,4); 94.2 (С-3); 99.1 (С-6). Найдено, %: С 44.65; Н 5.81; N 22.87. С₉H₁₄N₄O₄. Вычислено, %: С 44.63; Н 5.83; N 23.13.

Общая методика получения 1-(5-нитро-1,3-диоксан-5-ил)-1H-1,2,3-триазолов 4а–I. А) К раствору K_2CO_3 (863 мг, 6.25 ммоль) и аскорбиновой кислоты (176 мг, 1 ммоль) в 10 мл воды при перемешивании и комнатной температуре последовательно приливают раствор триметилсилилацетилена (588 мг, 6 ммоль) в 20 мл метилового спирта, CuSO₄·5H₂O (125 мг, 0.5 ммоль) в 10 мл воды и 5-азидо-5-нитро-1,3-диоксана **3а–f** (5 ммоль) в 20 мл метанола. Реакционную массу перемешивают в течение 24 часов при комнатной температуре, затем экстрагируют CH₂Cl₂ (2×50 мл). Объединенный экстракт промывают 70 мл воды и сушат над Na₂SO₄. Растворитель отгоняют при пониженном давлении, а остаток очищают методом колоночной хроматографии на силикагеле используя в качестве подвижной фазы смесь EtOAc-*н*гексан (1:1).

Б) К раствору 5-азидо-5-нитро-1,3-диоксана **Зе,g,h** (5 ммоль) и фенилацетилена/пропаргилового спирта (6 ммоль) в 10 мл ТГФ при комнатной температуре приливают раствор аскорбиновой кислоты (450 мг, 2.5 ммоль) в 5 мл воды и раствор CuSO₄·5H₂O (188 мг, 0.75 ммоль) в 5 мл воды. Реакционную массу перемешивают в течение 2-6 часов при комнатной температуре. После завершения реакции (контроль по TCX) смесь разбавляют 20 мл воды и экстрагируют CH_2Cl_2

(4×20 мл). Органический слой сушат над Na₂SO₄, растворитель удаляют в вакууме, а остаток очищают методом колоночной хроматографии на силикагеле, используя в качестве подвижной фазы смесь EtOAc-*н*-гексан (1:1).

1-(5-Нитро-1,3-диоксан-5-ил)-1H-1,2,3-триазол (4а). Выход 650 мг (65%) (метод А). Т. пл. 93-95°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1154 (С–О); 1332, 1569 (NO₂); 2855, 2869, 2933, 2983 (С–Н); 3117, 3151 (=С–Н). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 4.85 (2H_e, д, ²*J* = 12.4, OCH₂C); 4.92 (1H_e, д, ²*J* = 6.0, OCH₂O); 5.02 (1H_a, д, ²*J* = 6.0, OCH₂O); 5.15 (2H_a, д, ²*J* = 12.4, OCH₂C); 7.97 (1H, д, ³*J* = 1.2, CH-4-триазол); 8.73 (1H, д, ³*J* = 1.2, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 67.7 (2С-4,6); 90.7 (С-5); 92.9 (С-2); 124.7 (С-5-триазол); 134.1 (С-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 201 [M+H]⁺ (100). Найдено, %: С 36.02; H 4.01; N 27.96. С₆H₈N₄O₄. Вычислено, %: С 36.00; H 4.03; N 27.99.

1-(2-Метил-5-нитро-1,3-диоксан-5-ил)-1H-1,2,3-триазол (**4b**). Выход 440 мг (41%) (метод А). Т. пл. 116-119°С (ЕtOH). ИКспектр, *v*, см⁻¹: 1113 (С– O); 1337, 1572 (NO₂); 2855, 2897, 2928, 2950 (С–Н); 3143, 3168 (=С–Н). Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гц): 1.14 (3H, д, ³*J* = 5.2, С<u>Н</u>₃СН); 4.78 (2H_e, дт, ²*J* = 12.2, ⁴*J* = 1.6, CH₂); 5.07 (1H, к, ³*J* = 5.2, CH₃C<u>H</u>); 5.23 (2H_a, дт, ²*J* = 12.2, ⁴*J* = 1.6, CH₂); 7.97 (1H, д, ³*J* = 1.2, CH-4-триазол); 8.79 (1H, д, ³*J* = 1.2, CH-5триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 19.5 (CH₃); 66.1 (2C-4,6); 90.4 (C-5); 99.2 (C-2); 126.0 (C-5-триазол); 134.6 (C-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 215 [M+H]⁺ (100). Найдено, %: С 39.44; H 4.67; N 26.23. С₇H₁₀N₄O₄. Вычислено, %: С 39.25; H 4.71; N 26.16.

1-(5-Нитро-2-фенил-1,3-диоксан-5-ил)-1H-1,2,3-триазол (**4c**). Выход 828 мг (60%) (метод А). Т. пл. 150-151°С (ЕtOH). ИКспектр, *v*, см⁻¹: 1116 (С– O); 1340, 1585 (NO₂); 2855, 2887, 2923, 2958 (С–Н); 3113, 3151 (=С–Н). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 5.04 (2H_e, дт, ²*J* = 12.2, ⁴*J* = 1.6, CH₂); 5.42 (2H_a, дт, ²*J* = 12.2, ⁴*J* = 1.6, CH₂); 5.97 (1H, c, CH); 7.22-7.25 (2H, м, Ph); 7.30-7.34 (3H, м, Ph); 8.00 (1H, д, ³*J* = 1.2, CH-4-триазол); 8.87 (1H, д, ³*J* = 1.2, CH-5-триазол). Спектр ЯМР ¹³C, DMSO-d₆, δ, м.д.: 68.5 (2C-4,6); 90.6 (C-5); 100.7 (C-2); 125.8 (2C-2,6Ph); 126.0 (2C-3,5Ph); 126.1 (C-5-триазол); 129.1 (C-4Ph); 134.0 (C-4-триазол); 136.0 (C-1Ph). Масс-спектр, *m/z* (*I*_{отн},%): 277 [M+H]⁺ (100). Найдено, %: C 52.04; H 4.51; N 20.17. C₁₂H₁₂N₄O₄. Вычислено, %: C 52.17; H 4.38; N 20.28.

1-(5-Нитро-2-(3-нитрофенил)-1,3-диоксан-5-ил)-1H-1,2,3-триазол (4d). Выход 1043 мг (65%) (метод А). Светло-желтое масло. ИК спектр, *v*, см⁻¹: 1357, 1531, 1570 (NO₂); 3138, 3160 (CH). Спектр ЯМР ¹H, DMSOd₆, δ , м.д. (*J*, Γ ц): 4.55 (2H, д, ²*J* = 11.5, CH₂); 4.70 (2H, д, ²*J* = 11.5, CH₂); 6.02 (1H, c, CHPh); 7.66 (1H, т, ³*J* = 7.8, Ph); 7.90 (1H, д, ³*J* = 7.8, Ph); 8.01 (1H, д, ³*J* = 1, CH-4-триазол); 8.05 (1H, c, Ph); 8.25 (1H, д, ³*J* = 7.8, Ph); 8.90 (1H, д, ³*J* = 7.8, Ph); 8.90 (1H, д, ³*J* = 1, CH 5 техногод). Стокте СМР (2C 4 6): 92.0 (C 5):

³*J* = 1, СН-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 68.6 (2С-4,6); 93.0 (С-5); 98.9 (С-2); 120.5 (С-2Рh); 124.0 (С-4Рh); 126.0 (С-5-триазол); 132.3 (С-5Рh); 132.5 (С-6Рh); 137.5 (С-1Рh); 137.7 (С-4-триазол); 147.5 (С-3Рh). Масс-спектр, *m/z* (*I*_{отн},%): 322 [M+H]⁺ (100). Найдено, %: С 44.80; Н 3.51; N 21.67. С₁₂H₁₁N₅O₆. Вычислено, %: С 44.87; Н 3.45; N 21.80.

1-(2,2-Диметил-5-нитро-1,3-диоксан-5-ил)-1H-1,2,3-триазол (**4e**). Выход 832 мг (73%) (метод А). Т. пл. 104-105°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1103 (С–О); 1375, 1570 (NO₂); 2852, 2922, 2998 (С–Н); 3149, 3164 (=С–Н). $H_{3C} \sim CH_{3}$ Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.39 (3H, с, CH₃); 1.42 (3H, с, CH₃); 4.80 (2H_e, д, ²*J* = 13.2, CH₂); 5.06 (2H_a, д, ²*J* = 13.2, CH₂); 7.95 (1H, д, ³*J* = 1.2, CH-4-триазол); 8.71 (1H, д, ³*J* = 1.2, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 21.6 и 24.9 (оба CH₃); 61.9 (2C-4,6); 91.3 (C-5); 99.6 (C-2); 124.9 (C-5-триазол); 134.1 (C-4-триазол). Macc-спектр, *m/z* (*I*_{отн},%): 229 [M+H]⁺ (100). Найдено, %: С 42.15; H 5.21; N 24.49. C₈H₁₂N₄O₄. Вычислено, %: C 42.10; H 5.30; N 24.55.

1-(2-Метил-5-нитро-2-этил-1,3-диоксан-5-ил)-1Н-1,2,3-триазол (**4f**) O_oN смесь стереоизомеров (1:1, результаты NOESY). Выход 630 мг (52%) (метод А). Т. пл. 50-54°С. ИК спектр, v, см⁻¹: 1107 (С-О); 1337, 1564 (NO₂); 2887, 2936, 2950, 2985 (С-Н); 3119 (=С-Н). 1-(2-Метил-5-нитротранс-2-этил-1,3-диоксан-5-ил)-1Н-1,2,3-триазол (транс-4е). Спектр $\mathbf{M}\mathbf{P}^{-1}\mathbf{H}$ DMSO-d₆, δ , M.J. (*J*, Γ II): 0.69 (3H, T, ${}^{3}J$ = 7.6, CH₃CH₂); 1.40 (3H, c, CH₃); 1.67 (2H, K, ${}^{3}J$ = 7.6, CH₃CH₂); 4.85 (2H_e, д, ${}^{2}J$ = 12.8, OCH₂); 5.00 (2H_a, д, ${}^{2}J$ = 12.8, OCH₂); 7.95 (1H, д, ^{3}J = 1.6, CH-4-триазол); 8.73 (1H, д, ^{3}J = 1.6, CH-5-триазол). Спектр ЯМР 13 C, DMSOd₆, δ, м.д.: 7.1 (CH₃CH₂); 20.3 (CH₃C); 30.9 (CH₂CH₃); 61.7 (2С-4,6); 91.2 (С-5); 101.0 (С-2); 125.1 (С-5-триазол); 133.9 (С-4-триазол). 1-(2-Метил-5-нитро-цис-2-этил-1,3*диоксан-5-ил)-1H-1,2,3-триазол (цис-4е)*. Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гц): 0.83 (3H, T, ${}^{3}J = 7.4$, CH₃CH₂); 1.39 (3H, c, CH₃); 1.70 (2H, κ , ${}^{3}J = 7.4$, CH₃CH₂); 4.76 $(2H_e, \pi, {}^2J = 12.8, \text{OCH}_2); 5.10 (2H_e, \pi, {}^2J = 12.8, \text{OCH}_2); 7.94 (1H, \pi, {}^3J = 1.6, \text{CH}-4$ триазол); 8.69 (1H, д, ${}^{3}J$ = 1.6, CH-5-триазол). Спектр ЯМР 13 С, DMSO-d₆, δ , м.д.: 7.0 (CH₃CH₂); 18.2 (CH₃C); 28.1 (CH₂CH₃); 61.6 (2C-4,6); 91.2 (C-5); 100.8 (C-2); 124.4 (C-5триазол); 133.8 (С-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 243 [M+H]⁺ (100) (для обоих изомеров). Найдено, %: С 44.25; Н 5.76; N 23.31. С₉Н₁₄N₄O₄. Вычислено, %: С 44.63; Н 5.83; N 23.13.

Соединения **4g-i,l** синтезированы согласно ранее описанной процедуре [94]. Выходы составили 52-87%. Спектральные данные совпадают с описанными.

1-(8-Нитро-6,10-диоксастиро[4.5]дец-8-ил)-4-фенил-1Н-1,2,3-триазол (**4j**). Выход 1.353 г (82%) (метод Б). Т. пл. 187-189°С (ЕtOH). ИКспектр, о₂N, N, N, v, см⁻¹: 1143 (С–О); 1339, 1564 (NO₂); 2855, 2881, 2929, 2968 (С–Н); 3106, 3136 (=С–Н). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.58-1.66 (4H, м, 2CH₂); 1.91 (4H, дт, ²*J* = 14.0, ³*J* = 7.0, 2CH₂); 4.85 (2H_e, д, ²*J* = 12.8, OCH₂); 5.11 (2H_a, д, ²*J* = 12.8, OCH₂); 7.38 (1H, т, *J* = 7.2, 4-Ph); 7.48 (2H, т, *J* = 7.6, 3,5-Ph); 7.89 (2H, д, *J* = 7.2, 2,6-Ph); 9.19 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 22.5 и 22.9 (С-2,3); 32.8 и 35.2 (С-1,4); 63.4 (2С-7,9); 91.2 (С-8); 111.2 (С-5); 120.9 (С-5-триазол); 125.3 (2С-2,6Рh); 128.4 (С-4Рh); 128.8 (2С-3,5Рh); 129.3 (С-1Рh); 146.9 (С-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 331 [M+H]⁺ (100). Найдено, %: С 58.41; Н 5.57; N 16.84. С₁₆Н₁₈N₄O₄. Вычислено, %: С 58.17; Н 5.49; N 16.96.

1-(3-Нитро-1,5-диоксастиро[5.5]ундец-3-ил)-4-фенил-1Н-1,2,3-триазол (**4**k). Выход 1.307 г (76%) (метод Б). Т. пл. 167-169°С (ЕtOH). ИКспектр, *v*, см⁻¹: 1142 (С–О); 1338, 1564 (NO₂); 2854, 2885, 2926, 2968 (С–Н); 3136 (=С–Н). Спектр ЯМР ¹Н, DMSO-d₆, δ, м.д. (*J*, Гц): 1.37-1.50 (6H, м, 3CH₂); 1.72-1.78 (4H, м, 2CH₂); 4.86 (2H_e, д, ²*J* = 12.8, OCH₂); 5.09 (2H_a, д, ²*J* = 12.8, OCH₂); 7.39 (1H, т, *J* = 7.2, 4-Ph); 7.48 (2H, т, *J* = 7.6, 3,5-Ph); 7.89 (2H, д, *J* = 7.2, 2,6-Ph); 9.17 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 21.9 (2C-8,10); 24.6 (С-9); 29.8 и 33.0 (С-7,11); 61.2 (2C-2,4); 91.7 (С-3); 99.5 (С-6); 120.9 (С-5триазол); 125.3 (2C-2,6Ph); 128.4 (С-4Ph); 128.8 (2C-3,5Ph); 129.4 (C-1Ph); 146.9 (С-4триазол). Масс-спектр, *m/z* (*I*_{отн},%): 345 [M+H]⁺ (100). Найдено, %: С 59.32; H 5.94; N 16.14. С₁₇H₂₀N₄O₄. Вычислено, %: С 59.29; H 5.85; N 16.27.

Соединение 5 синтезировано согласно ранее описанной процедуре [90]. Выход 14.5 г (90%). Спектральные данные совпадают с описанными.

Соединение 6 синтезировано согласно ранее описанной процедуре [169]. Выход 20.5 г (95%).Спектральные данные совпадают с описанными.

Общая методика получения 5-азолилзамещенных-5-нитро-1,3-диоксанов 8а–1. К раствору азола (2 ммоль) в 10 мл ацетонитрила, при комнатной температуре и перемешивании присыпают Cs₂CO₃ (652 мг, 2 ммоль). Полученную суспензию выдерживают при перемешивании в течение 40 минут. Затем к смеси прибавляют 5бромо-2,2-диметил-5-нитро-1,3-диоксан (6) (480 мг, 2 ммоль) и выдерживают реакционную массу под ультрафиолетовыми лампами мощностью 100 Вт (контроль по TCX). По окончании выдержки реакционную массу разбавляют 20 мл воды и экстрагируют хлористым метиленом (3х10 мл). Объединенный экстракт промывают
водой, сушат над сульфатом натрия и упаривают под вакуумом. Продукт выделяют с помощью колоночной хроматографии на силикагеле, используя в качестве элюента смесь этилацетата и *н*-гексана.

1-(2,2-Диметил-5-нитро-1,3-диоксан-5-ил)-1Н-имидазол (**8a**). Выход 335 мг (74%). Т. пл. 119-122°С (ЕtOH). ИКспектр, *v*, см⁻¹: 1383, 1566 (NO₂); 2833, 2945, 2997 (CH); 3130 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ, _{H₃C} _{CH₃} м.д. (*J*, Гц):1.39 (3H, с, CH₃); 1.43 (3H, с, CH₃); 4.62 (2H, д, ²*J* = 12.8, CH₂O); 5.04 (2H, д, ²*J* = 12.8, CH₂O); 7.06 (1H, д, ³*J* = 1.6, CH-4-имидазол); 7.56 (1H, д, ³*J* = 1.6, CH-5имидазол); 8.15 (1H, с, CH-2-имидазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 20.9 (CH₃); 25.3 (CH₃); 62.0 (2C-4,6); 90.2 (C-5); 99.1 (C-2); 116.9 (C-5-имидазол); 129.4 (C-4-имидазол); 135.8 (C-2-имидазол). Масс-спектр, *m/z* (*I*_{отн},%): 228 [M+H]⁺ (100). Найдено, %: C 47.65; H 5.87; N 18.34. C₉H₁₃N₃O₄. Вычислено, %: C 47.57; H 5.77; N 18.49.

1-(2,2-Диметил-5-нитро-1,3-диоксан-5-ил)-1Н-бензоимидазол (**8b**). Выход 957 мг (69%) (загрузка 5 ммоль). Т. пл. 140-141.5 (с разложением). ИКспектр, *v*, см⁻¹: 1376, 1563 (NO₂); 2889, 2916, 2944, _{H₃C} С_{H₃}

3004 (СН); 3061, 3123 (СНАг). Спектр ЯМР ¹Н, DMSO-d₆, δ, м.д. (*J*, Гц): 1.43 (3H, с, CH₃); 1.47 (3H, с, CH₃); 4.87 (2H, д, ²*J* = 12.8, CH₂O); 5.16 (2H, д, ²*J* = 12.8, CH₂O); 7.28-7.37 (2H, м, Ar); 7.52-7.56 (1H, м, Ar); 7.74-7.78 (1H, м, Ar); 8.62 (1H, с, Ar). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 22.0 (CH₃); 24.3 (CH₃); 62.0 (2C-4,6); 92.6 (C-5); 99.6 (C-2); 111.9 (C-7Ar); 120.3 (C-4Ar); 123.1 (C-5Ar); 123.9 (C-6Ar); 131.2 (C-7aAr); 142.1 (C-2Ar); 143.6 (C-3aAr). Масс-спектр, *m/z* (*I*_{отн},%): 278 [M+H]⁺(100). Найдено, %: C 56.48; H 5.55; N 15.34. C₁₃H₁₅N₃O₄. Вычислено, %: C 56.31; H 5.45; N 15.15.

1-(2,2-Диметил-5-нитро-1,3-диоксан-5-ил)-2H-1,2,3-триазол (8с). Выход 296 мг (26%) (образуется в качестве минорного продукта при реакции с 1*H*-1,2,3-триазолом). Т. пл. 81-83°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1384, 1570 (NO₂); 2884, 2938, 2995 (CH); 3133 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.43 (6H, с, 2CH₃); 4.83 (2H, д, ²*J* = 12.9, CH₂O); 5.02 (2H, д, ²*J* = 12.9, CH₂O); 8.14 (2H, с, CH-3,4-триазол). Спектр ЯМР ¹³C, DMSO-d₆, δ, м.д.: 21.1 (CH₃); 25.0 (CH₃); 61.8 (2C-4,6); 94.0 (C-5); 99.4 (C-2); 137.3 (2C-3,4'). Масс-спектр, *m/z* (*I*_{отн},%): 229 [M+H]⁺ (100). Найдено, %: С 42.20; Н 5.45; N 24.38. C₈H₁₂N₄O₄. Вычислено, %: С 42.11; H 5.30; N 24.55.

1-(2,2-Диметил-5-нитро-1,3-диоксан-5-ил)-1Н-бензотриазол (8d). Выход 3.1 г (71%) (загрузка 16 ммоль). Т. пл. 94-95°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1380, 1563 (NO₂); 2885, 2939, 2989 (CH); 3066, 3094 $_{H_3C}^{OO}$ (CH₃) (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.47 (6H, д, *J* = 6.4, 2CH₃); 5.05 (2H, д, ²*J* = 12.9, CH₂O); 5.36 (2H, д, ²*J* = 12.9, CH₂O); 7.55 (1H, т, *J* = 7.7, Ar); 7.70 (1H, т, *J* = 7.7, Ar); 8.00 (1H, д, *J* = 8.5, Ar); 8.21 (1H, д, *J* = 8.5, Ar). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 20.4 (CH₃); 25.7 (CH₃); 61.8 (2C-4,6); 94.0 (C-5); 99.6 (C-2); 111.5 (C-7Ar); 120.1 (C-4Ar); 125.2 (C-5Ar); 129.4 (C-6Ar); 131.4 (C-7aAr); 145.4 (C-3aAr). Масс-спектр, *m/z* (*I*_{0тн},%): 279 [M+H]⁺ (100). Найдено, %: C 51.68; H 5.15; N 20.28. C₁₂H₁₄N₄O₄. Вычислено, %: C 51.80; H 5.07; N 20.13.

2-(2,2-Диметил-5-нитро-1,3-диоксан-5-ил)-2Н-бензотриазол (8е). Выход 720 мг (16%) (загрузка 16 ммоль) (образуется в качестве минорного продукта при реакции с 1*H*-1,2,3-бензотриазолом). Т. пл. 130-131°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1381, 1565 (NO₂); 2854, 2924, H₃C CH₃

2999, 3008 (CH); 3085, 3102 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.46 (6H, д, *J* = 4.6, 2CH₃); 5.02 (2H, д, ²*J* = 13.0, CH₂O); 5.20 (2H, д, ²*J* = 13.0, CH₂O); 7.55-7.61 (1H, м, Ar); 8.00-8.06 (1H, м, Ar). Спектр ЯМР ¹³C, DMSO-d₆, δ , м.д.: 20.7 (CH₃); 25.3 (CH₃); 62.1 (2C-4,6); 95.2 (C-5); 99.5 (C-2); 118.3 (2C-4,7Ar); 128.7 (2C-5,6Ar); 143.9 (2C-3a,7aAr). Масс-спектр, *m/z* (*I*_{отн},%): 279 [M+H]⁺(100). Найдено, %: C 51.68; H 5.15; N 20.28. C₁₂H₁₄N₄O₄. Вычислено, %: C 51.80; H 5.07; N 20.13.

2-(2,2-Диметил-5-нитро-1,3-диоксан-5-ил)-4-фенил-2Н-1,2,3-триазол

(8f). Выход 298 мг (49%) (образуется в качестве основного продукта при взаимодействии с 4-фенил-1*H*-1,2,3-триазолом). Т. пл. 114.5-115.5°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1374, 1566 (NO₂); 2927, 2956, 2999 H₃C CH₃ (CH); 3078, 3128 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.45 (6H, д, *J* = 7.3, 2CH₃); 4.89 (2H, д, ²*J* = 12.9, CH₂O); 5.08 (2H, д, ²*J* = 12.9, CH₂O); 7.42-7.56 (3H, м, Ph); 7.90-7.96 (2H, м, Ph); 8.63 (1H, с, CH-4-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 21.0 (CH₃); 25.5 (CH₃); 61.8 (2C-4,6); 94.1 (C-5); 99.9 (C-2); 126.2 (Ph); 128.4 (C-5триазол); 129.2 (Ph); 129.6 (Ph);134.8 (Ph); 149.4 (C-4-триазол). Масс-спектр, *m*/*z* (*I*_{0тн},%): 305 [M+H]⁺ (100). Найдено, %: С 55.30; Н 5.27; N 18.47. C₁₄H₁₆N₄O₄. Вычислено, %: C 55.26; H 5.30; N 18.41.

1-(2,2-Диметил-5-нитро-1,3-диоксан-5-ил)-1H-1,2,4-триазол (8g). Выход 673 мг (59%) (загрузка 5 ммоль). Т. пл. 120-121°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1376, 1567 (NO₂); 2854, 2925, 2997 (CH); 3113, 3134 $_{H_3C}^{\circ}$ CH₃ (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.40 (3H, с, CH₃); 1.44 (3H, с, CH₃); 4.75 (2H, д, ²*J* = 12.9, CH₂O); 4.97 (2H, д, ²*J* = 12.9, CH₂O); 8.23 (1H, с, CH-3-триазол); 9.17 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 22.0 (CH₃); 24.1 (CH₃); 61.6 (2C-4,6); 91.3 (C-5); 99.5 (C-2); 145.0 (C-5-триазол); 152.5(C-3-триазол). Массспектр, *m/z* (*I*_{отн},%): 229 [M+H]⁺ (100). Найдено, %: С 42.22; H 5.40; N 24.43. C₈H₁₂N₄O₄. Вычислено, %: C 42.11; H 5.30; N 24.55.

1-(2,2-Диметил-5-нитро-1,3-диоксан-5-ил)-4H-1,2,4-триазол (**8h**). Выход 297 мг (26%) (загрузка 5 ммоль) (образуется в качестве минорного продукта при реакции с 1*H*-1,2,4-триазолом). Светло-желтое масло. $H_{3C} \sim C_{H_{3}}^{0}$ ИК спектр, *v*, см⁻¹: 1382, 1572 (NO₂); 2854, 2925, 3002 (CH); 3173 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.37 (3H, с, CH₃); 1.44 (3H, с, CH₃); 4.72 (2H, д, ²*J* = 12.9, CH₂O); 4.98 (2H, д, ²*J* = 12.9, CH₂O); 9.04 (2H, с, CH-3,5-триазол). Спектр ЯМР ¹³C, DMSO-d₆, δ , м.д.: 21.5 (CH₃); 24.7 (CH₃); 61.4 (2C-4,6); 92.0 (C-5); 99.7 (C-2); 144.1 (2C-

3,5-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 229 [M+H]⁺ (100). Найдено, %: С 42.25; Н 5.37; N 24.48. С₈H₁₂N₄O₄.Вычислено, %: С 42.11; Н 5.30; N 24.55.

1-(2,2-Диметил-5-нитро-1,3-диоксан-5-ил)-1Н-тетразол (**8**i). Выход 2.11 г (58 %) (загрузка 16 ммоль). Т. пл. 116-117°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1379, 1572 (NO₂); 2893, 2923, 2956, 2992 (CH); 3162 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.37 (3H, с, CH₃); 1.49 (3H, с, CH₃); 4.88 (2H, д, ²*J* = 12.8, CH₂O); 5.05 (2H, д, ²*J* = 12.8, CH₂O); 10.10 (1H, с, CH). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 22.7 (CH₃); 23.5 (CH₃); 62.0 (2C-4,6); 90.3 (C-5); 99.9 (C-2); 144.0 (C-5-тетразол). Масс-спектр, *m/z* (*I*_{отн},%): 271 [M+H+CH₃CN]⁺ (100); 230 [M+H]⁺ (50). Найдено, %: C 36.55; H 4.75; N 30.48. C₇H₁₁N₅O₄. Вычислено, %: C 36.68; H 4.84; N 30.56.

2-(2,2-Диметил-5-нитро-1,3-диоксан-5-ил)-2H-тетразол (8j). Выход 950 мг (26%) (загрузка 16 ммоль), (образуется в качестве минорного продукта при реакции с 1*H*-тетразолом). Т. пл. 101-102°С (ЕtOH). ИК $\stackrel{\circ}{}_{H_3C} \stackrel{\circ}{\sim}_{CH_3}^{O}$ спектр, *v*, см⁻¹: 1383, 1574 (NO₂); 2891, 2943, 2997 (CH); 3165 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.40 (3H, с, CH₃); 1.48 (3H, с, CH₃); 4.96 (2H, д, ²*J* = 12.8, CH₂O); 5.09 (2H, д, ²*J* = 12.8, CH₂O); 9.34 (1H, с, CH). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 21.9 (CH₃); 24.3 (CH₃); 61.8 (2C-4,6); 92.8 (C-5); 99.9 (C-2); 154.2 (C-5-тетразол). Масс-спектр, *m/z* (*I*_{отн},%): 271 [M+H+CH₃CN]⁺ (70); 230 [M+H]⁺ (40). Найдено, %: С 36.55; H 4.75; N 30.48. C₇H₁₁N₅O₄. Вычислено, %: С 36.68; H 4.84; N 30.56.

1-(2,2-Диметил-5-нитро-1,3-диоксан-5-ил)-5-фенил-1Н-тетразол (8k). Выход 10 мг (8 %) (загрузка 0.42 ммоль), (образуется в качестве минорного продукта при реакциис 5-фенил-1*H*-тетразолом и AIBN). $H_{3C} \sim C_{H_{3}}^{O_{2}N}$ Т. пл. 126-128°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1378, 1565 (NO₂); 2886, 2953, 2991 (CH). Масс-спектр, *m/z* (I_{0TH} ,%): 347 [M+H+CH₃CN]⁺(60); 306 [M+H]⁺ (40). (81). Выход 1.46 г (80%) (загрузка 6 ммоль). Т. пл. 95–96°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1382, 1587 (NO₂); 2890, 2947, 2998 (CH); 3100 (CH Ar). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.44 (3H, с, CH₃); 1.50

(3H, c, CH₃); 5.01 (2H, д, ${}^{2}J$ = 12.9, CH₂O); 5.14 (2H, д, ${}^{2}J$ = 12.9, CH₂O); 7.65-7.57 (3H, м, Ph); 8.08-8.18 (2H, м, Ph). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 21.7 (CH₃); 24.2 (CH₃); 61.7 (2C-4,6); 93.3 (C-5); 99.8 (C-2); 125.4 (C-1Ph); 126.7 (2C-2,6Ph); 129.2 (2C-3,5Ph); 131.3(C-4Ph); 164.7 (C-5-тетразол). Спектр ЯМР ¹⁵N, δ , м.д.: 278.6 (N-2-тетразол); 293.0 (N-4-тетразол); 333.1 (N-1-тетразол); 377.1 (N-3-тетразол); 384.8 (N-1-NO₂). Масс-спектр, *m*/*z* ($I_{\text{отн}}$ %): 306 [M+H]⁺ (100). Найдено, %: C 51.25; H 4.85; N 23.07. C₁₃H₁₅N₅O₄. Вычислено, %: C 51.15; H 4.95; N 22.94.

Общая методика получения 2-нитро-2-триазолилпропандиолов (16е,i,l). К 10% метанольному раствору 1,3-диоксана (4е,i,l) (50 ммоль) добавляют соляную кислоту из расчета 7.5 моль на моль исходного диоксана. После выдержки (контроль по TCX) реакционную массу нейтрализуют твердым гидрокарбонатом натрия. Осадок отфильтровывают и промывают метанолом. Фильтрат упаривают на ротационном испарителе. Остаток экстрагируют этилацетатом. Экстракт сушат над сульфатом натрия и упаривают на ротационном испарителе. Продукты используют в следующей стадии без дополнительной очистки.

2-*Нитро-2-(1Н-1,2,3-триазол-1-ил)пропан-1,3-диол* (**16e**). Выход 9.02 г (96%). Т. пл. 114-119°С. ИК спектр, *v*, см⁻¹: 1343, 1567 (NO₂); 3188, 3172 (CH); 3387 (OH). Спектр ЯМР ¹Н, DMSO-d₆, δ, м.д. (*J*, Гц): 3.38 ОН ОН (2H, уш. с, 2OH); 4.49 (4H, с, 2CH₂); 7.88 (1H, д, ³*J* = 1.3, CH-4-триазол); 8.52 (1H, д, ³*J* = 1.3, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 61.0 (2C-1,3); 101.5 (C-2); 126.0 (C-5-триазол); 133.6 (C-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 189 [M+H]⁺ (100). Найдено, %: С 31.85; Н 4.44; N 29.87. С₅Н₈N₄O₄. Вычислено, %: С 31.92; Н 4.29; N 29.78.

N=N

Ph

Выходы 16i,l составили 96 и 98%. Спектральные данные совпадают с ранее описанными [94].

5-нитро-5-(1Н-1,2,3-триазол-1-Общая методика получения ил) гексагидропиримидинов (17а-о). К интенсивно перемешиваемой смеси 2-нитро-2триазолилпропандиола (16e,i,l) (2 ммоль) в 4 мл этанола, прикапывают 40% водный раствор формальдегида (150 мкл, 2 ммоль), затем добавляют первичный амин (5 ммоль). Реакционную массу выдерживают при 75°С в течение 2 часов. За ходом процесса наблюдают с помощью тонкослойной хроматографии. По окончании реакции растворитель отгоняют под вакуумом. Продукт выделяют с помощью препаративной хроматографии.

1,3-Диметил-5-нитро-5-(1Н-1,2,3-триазол-1-ил)гексагидропиримидин (17a). Выход 240 мг (53%). Желтое масло. ИК спектр, v, см⁻¹: 1338, 1564 (NO₂); 3132 (CH). Спектр ЯМР ¹Н, DMSO-d₆, δ, м.д. (*J*, Гц): 2.22 н₃с^{-N}

(6H, c, 2CH₃), 3.15 (2H, c, NCH₂); 3.20 (1H, c, CCH₂); 3.66 (3H, c, CCH₂); 7.89 (1H, c, СН-4-триазол); 8.66 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 40.6 (2CH₃); 54.9 (2CCH₂); 67.0 (NCH₂); 93.9 (С-NO₂); 123.6 (С-5-триазол); 133.3 (С-4триазол). Масс-спектр, *m/z* (*I*_{отн},%): 227[M+H]⁺ (100). Найдено, %: С 42.36; Н 6.34; N 37.20. C₈H₁₄N₆O₂. Вычислено, %: С 42.47; Н 6.24; N 37.15.

O₂N

CH,

1,3-Диизопропил-5-нитро-5-(1Н-1,2,3-триазол-1-

O₂N ил)гексагидропиримидин (17b). Выход 322 мг (57%). Светложелтое масло. ИКспектр, v, см⁻¹: 1362, 1560 (NO₂); 2977 (CH). ĊH ĊH₃ Спектр ЯМР ¹Н, DMSO-d₆, δ, м.д. (*J*, Гц): 0.99-1.03 (12H, м, 4CH₃);

2.83-2.90 (2H, м, 2CH); 3.33(1H, д, ²*J* = 8.7, NCH₂); 3.44-3.47 (3H, м, NCH₂, CCH₂); 3.97 (2H, д, ²*J* = 11.9, ССН₂); 7.87 (1H, с, СН-4-триазол); 8.62 (1H, с, СН-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 17.9 (CH₃); 18.4 (CH₃); 51.4 (2CH); 51.8 (2CCH₂); 67.8 (NCH₂); 94.6 (С-NO₂); 124.5 (С-5-триазол); 133.4 (С-4-триазол). Масс-спектр, *m/z*

(*I*_{отн},%): 283 [M+H]⁺ (100). Найдено, %: С 51.17; Н 7.77; N 29.72. С₁₂H₂₂N₆O₂. Вычислено, %: С 51.05; Н 7.85; N 29.77.

1,3-Дитретбутил-5-нитро-5-(1H-1,2,3-триазол-1ил)гексагидропиримидин (17с). Выход 341 мг (55%). Т. пл. 60-70°С. ИК спектр, v, см⁻¹: 1362, 1560 (NO₂); 2977 (CH). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.09 (18H, с, 6CH₃); 3.19 (1H, д, *J* = 8.7, NCH₂); 3.27 (2H, д, *J* = 12.1, CCH₂); 3.81 (1H, д, *J* = 8.7, NCH₂); 4.23 (2H, д, *J* = 12.1, CCH₂); 7.88 (1H, с, CH-4-триазол); 8.67 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 25.9 (6CH₃); 50.8 (2CCH₃); 53.3 (2CCH₂); 62.9 (NCH₂); 95.3 (C-NO₂); 124.2 (C-5-триазол); 133.4 (C-4-триазол). Масс-спектр, *m*/*z* (*I*_{отн},%): 311 [M+H]⁺ (100). Найдено, %: C 54.26; H 8.54; N 27.20. C₁₄H₂₆N₆O₂. Вычислено, %: C 54.17; H 8.44; N 27.08.

1,3-Дициклогексил-5-нитро-5-(1Н-1,2,3-триазол-1-

ил)гексагидропиримидин (**17d**). Выход 377 мг (52%). Светложелтое масло. ИК спектр, *v*, см⁻¹: 1345, 1564 (NO₂); 3131 (CH). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.06-1.30 (10H, м, CH₂-

циклогексил); 1.56 (2H, д, J = 11.4, CH₂-циклогексил); 1.71 (8H, д, J = 8.7, CH₂циклогексил); 2.44 (2H, т, J = 10.5, CH-циклогексил); 3.46 (1H, д, J = 9.0, NCH₂); 3.56 (3H, т, J = 11.4, CCH₂); 4.02 (2H, д, J = 12.1, CCH₂); 7.88 (1H, с, CH-4-триазол); 8.62(1H, с, CH-5-триазол). Спектр ЯМР ¹³C, DMSO-d₆, δ , м.д.: 24.9 (циклогексил); 24.9 (циклогексил); 25.4 (циклогексил); 28.4 (циклогексил); 28.7 (циклогексил); 52.7 (2CCH₂); 60.1 (NCH₂); 67.8 (циклогексил); 94.6 (C-NO₂); 124.5 (C-5-триазол); 133.4 (C-4-триазол). Масс-спектр, m/z (I_{0TH} ,%): 363 [M+H]⁺ (100). Найдено, %: C 59.59; H 8.42; N 23.20. C₁₈H₃₀N₆O₂. Вычислено, %: C 59.64; H 8.34; N 23.19.

1,3-Дибензил-5-нитро-5-(1Н-1,2,3-триазол-1ил)гексагидропиримидин (**17е**). Выход 287 мг (38%).Светложелтое масло. ИК спектр, *v*, см⁻¹: 1362, 1560 (NO₂); 2977

(CH). Спектр ЯМР ¹Н, DMSO-d₆, δ, м.д. (*J*, Гц): 3.26 (2H, дд, *J* = 25.8, *J* = 10.1, NCH₂); 3.53 (4H, к, *J* = 13.5, CH₂Ph); 3.90 (4H, к, *J* = 12.3, CCH₂); 7.11-7.16 (4H, м, Ph); 7.18-7.28 (6H, м, Ph); 7.95 (1H, д, *J* = 1.3, CH-4-триазол); 8.65 (1H, д, *J* = 1.3, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 56.0 (2CCH₂); 56.8 (2CH₂Ph); 70.4 (NCH₂); 93.7 (C-NO₂); 124.9 (C-5-триазол); 126.9 (Ph); 127.9 (Ph); 128.3 (Ph); 133.6 (C-4-триазол); 137.1 (Ph). Масс-спектр, *m/z* (*I*_{отн},%): 379 [M+H]⁺ (100). Найдено, %: C 63.53; H 5.78; N 20.20. C₂₀H₂₂N₆O₂. Вычислено, %: C 63.48; H 5.86; N 20.25.

OH

[1-(1,3-Диметил-5-нитрогексагидропиримидин-5-ил)-1H-1,2,3триазол-4-ил]метанол (17f). Выход 297 мг (58%). Светло-желтое масло. ИК спектр, v, см⁻¹: 1345, 1567 (NO₂); 3151 (CH); 3377 (OH). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 2.22 (6H, с, 2CH₃); 3.13

(2H, дд, *J* = 19.2, *J* =9.3, NCH₂); 3.64 (4H, к, *J* = 12.9, CCH₂); 4.57 (2H, д, *J* = 4.7 <u>CH₂OH</u>); 5.22 (1H, т, *J* = 4.7 CH₂<u>OH</u>); 8.48 (1H, с, CH-5-триазол). Спектр ЯМР ¹³C, DMSO-d₆, δ, м.д.: 41.1 (2CH₃); 54.7 (2CCH₂); 56.8 (<u>CH₂OH</u>); 76.0 (NCH₂); 93.8 (C-NO₂); 122.6 (C-5-триазол); 148.3 (C-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 257[M+H]⁺ (100). Найдено, %: C 42.23; H 6.35; N 32.68. C₉H₁₆N₆O₃. Вычислено, %: C 42.18; H 6.29; N 32.79.

[1-(1,3-Диизопропил-5-нитрогексагидропиримидин-5-ил)-1H-1,2,3-триазол-4-ил]метанол (17g). Выход 243 мг (39%). Т. пл. 100-110°С. ИКспектр, v, см⁻¹: 1362, 1560 (NO₂); 2977 (CH); 3949 (OH). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.01 (12H, дд, *J* = 10.8, *J* = 6.6, 4CH₃); 2.82-2.93 (2H, м, 2<u>CH</u>CH₃); 3.31 (1H, д, *J* = 8.7, NCH₂); 3.40 (2H, д, *J* = 12.2, CCH₂); 3.46 (1H, д, *J* = 8.7, NCH₂); 3.97 (2H, д, *J* = 12.2, CCH₂); 4.56 (2H, с,

<u>СН</u>₂OH); 5.24 (1H, уш. с, СН₂<u>OH</u>); 8.47 (1H, с, СН-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 17.8 (СН₃); 18.4 (СН₃); 51.5 (<u>СН</u>СН₃); 51.7 (2ССН₂); 54.6 (<u>СН</u>₂OH); 68.0 (NCH₂); 94.7 (С-NO₂); 122.0 (С-5-триазол); 148.2 (С-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 313 [M+H]⁺ (100). Найдено, %: С 49.93; Н 7.75; N 26.88. С₁₃H₂₄N₆O₃. Вычислено, %: С 49.99; Н 7.74; N 26.90.

[*1-(1,3-Дициклогексил-5-нитрогексагидропиримидин-5-ил)-1Н-1,2,3-триазол-4-ил]метанол* (**17i**). Выход 415 мг (53%). Т. пл. 106-115°С. ИК спектр, *v*, см⁻¹: 1344, 1553 (NO₂); 3127 (CH); 3322 (OH). Спектр ЯМР ¹Н, DMSO-d₆, δ, м.д. (*J*, Гц): 1.01-1.36 (10Н, м, CH₂-циклогексил); 1.55 (2Н, д, *J* = 11.4, CH-циклогексил);

1.71 (8H, д, *J* = 9.9, CH₂-циклогексил); 2.42 (2H, т, *J* = 10.5, CH-циклогексил); 3.42 (1H, д, *J* = 9.0, NCH₂); 3.47 (2H, д, *J* = 12.2, CCH₂); 3.56 (1H, д, *J* = 9.0, NCH₂); 4.02 (2H, д, *J* = 12.2, CCH₂); 4.55 (2H, д, *J* = 3.4, <u>CH₂OH</u>); 5.20 (1H, уш. с, CH₂<u>OH</u>); 8.45 (1H, с, CH-5-триазол). Спектр ЯМР ¹³C, DMSO-d₆, δ, м.д.: 24.9 (циклогексил); 25.0 (циклогексил); 25.4 (циклогексил); 28.3 (циклогексил); 28.6 (циклогексил); 52.6 (2CCH₂); 54.7 (<u>CH₂OH</u>); 60.2 (циклогексил); 68.0 (NCH₂); 94.7 (C-NO₂); 122.1 (C-5-триазол); 148.2 (C-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 393 [M+H]⁺ (100). Найдено, %: C 58.22; H 8.17; N 21.45. C₁₉H₃₂N₆O₃. Вычислено, %: C 58.14; H 8.22; N 21.41.

[1-(1,3-Дибензил-5-нитрогексагидропиримидин-5-ил)-1Н-

1,2,3-триазол-4-ил]метанол (**17j**). Выход 498 мг (61%). Светло-желтое масло. ИК спектр, *v*, см⁻¹: 1362, 1560 (NO₂); 2977 (CH); 3449 (OH). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*,

Гц): 3.22 (1H, д, *J* = 9.9, NCH₂); 3.31 (1H, д, *J* = 9.9, NCH₂); 3.56 (4H, к, *J* = 13.5, CH₂Ph); 3.80 (2H, д, *J* = 12.5, CCH₂); 3.92 (2H, д, *J* = 12.5, CCH₂); 4.60 (2H, с, <u>CH₂OH</u>); 5.28 (1H, уш. с, CH₂<u>OH</u>); 7.17(4H, д, *J* = 7.2, Ph); 7.20-7.28 (6H, м, Ph); 8.46 (1H, с, CH-5-триазол). Спектр ЯМР ¹³C, DMSO-d₆, δ, м.д.: 54.7 (2CCH₂); 55.7 (<u>CH₂OH</u>); 56.9(CH₂Ph); 70.7 (NCH₂); 93.8 (C-NO₂); 122.4 (C-5-триазол); 126.9 (Ph); 127.9 (Ph); 128.4 (Ph); 137.1 (Ph); 148.5 (C-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 409 [M+H]⁺ (100). Найдено, %: C 61.67; H 5.85; N 20.48. C₂₁H₂₄N₆O₃. Вычислено, %: C 61.75; H 5.92; N 20.58. [1-(1,3-Диметил-5-нитрогексагидропиримидин-5-ил)-1H-1,2,3триазол-4,5-диил] диметанол (17k). Выход 360 мг (63%). Т. пл. 133-143°С. ИК спектр, v, см⁻¹: 1334, 1564 (NO₂); 3193 (CH); 3334 (OH). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 2.25 (6H, с, 2CH₃); ^{H₃}C^{-N}CH₃ 3.15 (1H, д, *J* = 9.2, NCH₂); 3.20 (1H, д, *J* = 9.2, NCH₂); 3.64 (2H, д, *J* = 12.5, CCH₂); 3.83 (2H, д, *J* = 12.5, CCH₂); 4.55 (2H, д, *J* = 5.5, <u>CH₂OH</u>); 4.65 (2H, д, *J* = 3.4, <u>CH₂OH</u>); 5.09 (1H, т, *J* = 5.5, CH₂OH); 5.56 (1H, т, *J* = 5.5, CH₂OH). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 41.2 (2CH₃); 50.8 (CH₂OH); 53.8 (CH₂OH); 57.4 (2CCH₂); 76.3 (NCH₂); 95.9 (C-NO₂); 135.3 (C-5-триазол); 146.3 (C-4-триазол). Масс-спектр, *m*/*z* (*I*_{отн},%): 287 [M+H]⁺ (100). Найдено, %: C 41.87; H 6.30; N 29.40. C₁₀H₁₈N₆O₄. Вычислено, %: C 41.95; H 6.34; N 29.36.

[1-(1,3-Диизопропил-5-нитрогексагидропиримидин-5-ил)-1H-1,2,3-триазол-4,5-диил]диметанол (17l). Выход 274 мг (40%). Светло-желтое масло. ИК спектр, v, см⁻¹: 1362, 1560 (NO₂); 3255 (OH). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (J, Γ ц): 1.01 (12H, дд, J= 11.8, J = 6.5, 4CH₃); 2.81-2.93 (2H, м, 2CH); 3.32 (1H, д, J = 8.5,

NCH₂); 3.47 (1H, д, *J* = 8.5, NCH₂); 3.54 (2H, д, *J* = 12.3, CCH₂); 4.02 (2H, д, *J* = 12.3, CCH₂); 4.53 (2H, д, *J* = 5.5, <u>CH₂OH</u>); 4.63 (2H, д, *J* = 5.5, <u>CH₂OH</u>); 5.10 (1H, т, *J* = 5.5, CH₂OH); 5.56 (1H, т, *J* = 5.5, CH₂OH). Спектр ЯМР ¹³C, DMSO-d₆, δ, м.д.: 17.6 (CH₃); 18.6 (CH₃); 50.5 (CH₂OH); 51.6 (2CH); 52.4 (CH₂OH); 53.7 (2CCH₂); 67.7 (NCH₂); 96.8 (C-NO₂); 135.0 (C-5-триазол); 146.4 (C-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 343 [M+H]⁺ (100). Найдено, %: C 49.20; H 7.60; N 24.47. C₁₄H₂₆N₆O₄. Вычислено, %: C 49.11; H 7.65; N 24.54.

[*1-(1,3-Дитретбутил-5-нитрогексагидропиримидин-5-ил)-1Н-1,2,3-триазол-4,5-диил]диметанол* (**17m**). Выход 244 мг (33%). Т. пл. 110-120°С. ИК спектр, *v*, см⁻¹: 1362, 1560 (NO₂); 3275 (OH). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.09 (18H, с, 6CH₃); 3.05 (1H, д, *J* = 8.5, NCH₂); 3.21 (2H, д, *J* = 12.3, CCH₂); 3.95 (1H,

д, J = 8.5, NCH₂); 4.43 (2H, д, J = 12.3, CCH₂); 4.53 (2H, д, J = 5.5, <u>CH₂OH</u>); 4.63 (2H, д, J = 5.5, <u>CH₂OH</u>); 5.07 (1H, т, J = 5.5, CH₂OH); 5.53 (1H, т, J = 5.5, CH₂OH). Спектр ЯМР ¹³C, DMSO-d₆, δ , м.д.: 25.8 (CH₃); 50.4 (CH₂OH); 51.0 (CCH₃); 52.8 (CH₂OH); 53.2 (2CCH₂); 71.4 (NCH₂); 94.0 (C-NO₂); 133.0 (C-5-триазол); 146.8 (C-4-триазол). Масс-спектр, m/z ($I_{\text{отн}}$,%): 371 [M+H]⁺ (100). Найдено, %: C 51.80; H 8.20; N 22.57. C₁₆H₃₀N₆O₄. Вычислено, %: C 51.88; H 8.16; N 22.69.

[1-(1,3-Дициклогексил-5-нитрогексагидропиримидин-5-ил)-1H-1,2,3-триазол-4,5-диил]диметанол (17n). Выход 329 мг (39%). Светло-желтое масло. ИКспектр, v, см⁻¹: 1342, 1565 (NO₂); 3369 (OH). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.02-1.35 (10H, м, CH₂-циклогексил); 1.55 (2H, д, *J* = 11.4, CH-циклогексил);

1.72 (8H, д, *J* = 9.9, CH₂-циклогексил); 2.45 (2H, т, *J* = 10.5, CH-циклогексил); 3.42 (1H, д, *J* = 8.5, NCH₂); 3.59 (1H, д, *J* = 8.5, NCH₂); 3.61 (2H, д, *J* = 12.5, CCH₂); 4.08 (2H, д, *J* = 12.5, CCH₂); 4.54 (2H, c, <u>CH₂OH</u>); 4.64 (2H, c, <u>CH₂OH</u>); 5.06 (1H, уш. c, CH₂<u>OH</u>); 5.52 (1H, уш. c, CH₂<u>OH</u>). Спектр ЯМР ¹³C, DMSO-d₆, δ, м.д.: 24.9 (циклогексил); 25.4 (циклогексил); 28.3 (циклогексил); 28.8 (циклогексил); 50.7 (CH₂OH); 53.3 (CH₂OH); 53.8 (2CCH₂); 60.4 (циклогексил); 67.9 (NCH₂); 96.9 (C-NO₂); 134.1 (C-5-триазол); 146.4 (C-4-триазол). Масс-спектр, *m/z* (*I*_{0тн}%): 423 [M+H]⁺ (100). Найдено, %: C 56.80; H 8.20; N 19.77. C₂₀H₃₄N₆O₄. Вычислено, %: C 56.85; H 8.11; N 19.89.

[1-(1,3-Дибензил-5-нитрогексагидропиримидин-5-ил)-1Н-

1,2,3-триазол-4,5-диил] диметанол (**170**). Выход 473 мг (54%). Светло-желтое масло. ИК спектр, *ν*, см⁻¹: 1362, 1560 (NO₂); 3449 (OH). Спектр ЯМР ¹Н, DMSO-d₆, δ, м.д. (*J*, Гц):

3.24 (1H, μ , J = 10.0, NCH₂); 3.32 (1H, μ , J = 8.5, NCH₂); 3.58 (4H, c, CH₂Ph); 3.94 (4H, c, 2CCH₂); 4.50 (2H, μ , J = 5.5, <u>CH₂OH</u>); 4.54 (2H, μ , J = 5.5, <u>CH₂OH</u>); 5.16 (1H, π , J = 5.5, CH₂OH); 5.51 (1H, π , J = 5.5, CH₂OH); 7.17 (4H, μ , J = 6.9, Ph); 7.20-7.29 (6H, μ , Ph). CIERTP *JMP* ¹³C, DMSO-d₆, δ , M. μ .: 50.7 (CH₂OH); 53.7 (CH₂OH); 56.3 (CH₂Ph); 57.1 (2CCH₂); 70.9 (NCH₂); 95.9 (C-NO₂); 126.9 (Ph); 127.9 (Ph); 128.4 (Ph); 135.1 (C-5-

триазол); 137.1 (Ph); 146.3 (С-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 439 [M+H]⁺ (100). Найдено, %: С 60.30; Н 5.92; N 19.20. С₂₂Н₂₆N₆O₄. Вычислено, %: С 60.26; Н 5.98; N 19.17.

3-Изопропил-5-нитро-5-(1H-1,2,3-триазол-1-ил)-1,3-оксазин (18b). Выход 96 мг (20%). Светло-желтое масло. ИК спектр, v, см⁻¹: 1343, 1573 (NO₂); 3119 (CH). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): ^{H₃C} (H₃) 0.94-0.97 (6H, м, 2CH₃); 2.85-2.89 (1H, м, CH); 3.80 (1H, д, *J* = 12.7, CCH₂); 4.22 (1H, д, *J* = 12.7, CCH₂); 4.29 (1H, д, *J* = 8.0, NCH₂); 4.42 (1H, д, *J* = 8.0, NCH₂); 4.55 (1H, д, *J* = 12.7, CCH₂); 4.97 (1H, д, *J* = 12.7, CCH₂); 7.94 (1H, с, CH-4триазол); 8.73 (1H, с, CH-5-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 242 [M+H]⁺ (100). Найдено, %: C 44.75; H 6.29; N 29.20. C₉H₁₅N₅O₃. Вычислено, %: C 44.81; H 6.27; N 29.03.

3-трет-Бутил-5-нитро-5-(1H-1,2,3-триазол-1-ил)-1,3-оксазин (**18с**). Выход 66 мг (13%). Светло-желтое масло. ИК спектр, *v*, см⁻¹: 1342, 1570 (NO₂); 2860, 2980 (CH). Спектр ЯМР ¹H, CDCl₃, δ, м.д. (*J*, Гц): ^H_{H₃} 1.12 (9H, с, 3CH₃); 3.75 (1H, д, *J* = 12.5, CCH₂); 4.20 (1H, д, *J* = 12.5,

ССН₂); 4.34 (1H, д, *J* = 8.0, NCH₂); 4.44 (1H, д, *J* = 12.5, CCH₂); 4.52 (1H, д, *J* = 8.0, NCH₂); 4.91 (1H, д, *J* = 12.5, CCH₂); 7.77 (1H, с, CH-4-триазол); 7.91 (1H, с, CH-5-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 256 [M+H]⁺ (100). Найдено, %: С 47.15; H 6.69; N 27.35. С₁₀H₁₇N₅O₃. Вычислено, %: С 47.05; H 6.71; N 27.43.

3-Циклогексил-5-нитро-5-(1Н-1,2,3-триазол-1-ил)-1,3-оксазин

(18d). Выход 51 мг (9%). Светло-желтое масло. ИК спектр, *v*, см⁻¹: 1343, 1573 (NO₂); 3010 (CH). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.15 (5H, м, CH₂-циклогексил); 1.53 (2H, т, *J* = 12.0, CH₂циклогексил); 1.67 (4H, д, *J* = 9.6, CH₂-циклогексил); 3.80 (1H, д, *J* = 12.7, CCH₂); 4.28 (1H, д, *J* = 12.7, CCH₂); 4.31 (1H, д, *J* = 8.0, NCH₂); 4.45 (1H, д, *J* = 12.7, CCH₂); 4.58 (1H, д, *J* = 8.0, NCH₂); 4.95 (1H, д, *J* = 12.7, CCH₂); 7.94 (1H, с, CH-4-триазол); 8.73 (1H, с, СН-5-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 282 [M+H]⁺ (100). Найдено, %: С 51.15; Н 6.76; N 24.85. С₁₂Н₁₉N₅O₃. Вычислено, %: С 51.23; Н 6.81; N 24.90.

[1-(3-Изопропил-5-нитро-1,3-оксазин-5-ил)-1H-1,2,3-триазол-4ил]метанол (18g). Выход 179 мг (33%). Светло-желтое масло. ИК спектр, v, см⁻¹: 1344, 1566 (NO₂); 2971 (CH); 3350 (OH). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 0.96 (3H, с, CH₃); 0.97 (3H, с, CH₃); 2.85-2.90 (1H, м, CH); 3.75 (1H, д, *J* = 13.0, CCH₂); 4.22 (1H, д, *J* = 12.7, CCH₂); 4.27 (1H, д, *J* = 8.0, NCH₂); 4.41 (1H, д, *J* = 8.0, NCH₂); 4.48-4.57 (4H, м, CCH₂+<u>CH₂</u>OH); 5.25 (1H, уш. с, CH₂OH); 8.56 (1H, с, CH-5-триазол). Масс-спектр, *m*/*z* (*I*_{0тн},%): 272 [M+H]⁺ (100). Найдено, %: С 44.22; Н 6.36; N 25.85. C₁₀H₁₇N₅O₄. Вычислено, %: С 44.28; H 6.32; N 25.82.

[1-(3-трет-Бутил-5-нитро-1,3-оксазин-5-ил)-1Н-1,2,3-триазол-4-ил]метанол (**18h**). Выход 46 мг (8%). Светло-желтое масло. Спектральные данные совпадают с описанными [94].

[1-(3-Циклогексил-5-нитро-1,3-оксазин-5-ил)-1H-1,2,3-триазол-4-ил]метанол (18і). Выход 37 мг (6%). Светло-желтое масло. ИК спектр, v, см⁻¹: 1345, 1564 (NO₂); 3347 (OH). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.08-1.22 (5H, м, CH₂-циклогексил); 1.53-1.69 (6H, м, CH₂-циклогексил); 3.82 (1H, д, *J* = 12.7, CCH₂);

4.27 (1H, д, *J* = 12.7, CCH₂); 4.33 (1H, д, *J* = 8.0, NCH₂); 4.45 (1H, д, *J* = 12.7, CCH₂); 4.58 (1H, д, *J* = 8.0, NCH₂); 4.95 (1H, д, *J* = 12.7, CCH₂); 5.02 (2H, с, <u>CH₂OH</u>); 5.25 (1H, уш. с, CH₂<u>OH</u>); 8.55 (1H, с, CH-5-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 312 [M+H]⁺ (100). Найдено, %: C 50.28; H 6.76; N 22.55. C₁₃H₂₁N₅O₄. Вычислено, %: C 50.15; H 6.80; N 22.49. [1-(3-Бензил-5-нитро-1,3-оксазин-5-ил)-1H-1,2,3-триазол-4ил]метанол (18j). Выход 242 мг (38%). Светло-желтое масло. ИК спектр, v, см⁻¹: 1341, 1561 (NO₂); 2975 (CH); 3263 (OH). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 3.56 (1H, д, *J* = 12.7, CCH₂); 4.01 (1H, д, *J* = 12.7, CCH₂); 4.26 (1H, д, *J* = 12.7, CCH₂); 4.34 (1H, д, *J* = 8.0, NCH₂); 4.44 (1H, д, *J* = 8.0, NCH₂); 4.60 (2H, с, CH₂Ph); 4.90 (1H, д, *J* = 12.7, CCH₂), 5.00 (2H, с, <u>CH₂OH</u>); 5.28 (1H, уш. с, CH₂<u>OH</u>); 7.20-7.34 (5H, м, Ph); 8.55 (1H, с, CH-5триазол). Масс-спектр, *m/z* (*I*_{отн},%): 320 [M+H]⁺ (100). Найдено, %: C 52.58; H 5.26; N

Соединение **10b** синтезировано согласно ранее описанной процедуре [94]. Выход 32.29 г (92%). Спектральные данные совпадают с описанными.

Соединение **20** синтезировано согласно ранее описанной процедуре [109, **Ошибка! Источник ссылки не найден.**]. Выход 19.22 г (72%). Спектральные данные совпадают с описанными.

O₂N

. СН³

3-(трет-Бутил)-5-нитро-5-(2Н-5-фенил-тетразол-2-ил)-1,3-

21.85. C₁₄H₁₇N₅O₄. Вычислено, %: С 52.66; Н 5.37; N 21.93.

оксазинан (**21а**). Соединение синтезировано согласно общей методике фотоиндуцированного алкилирования. Загрузка ^{H₃C} исходного бромида 3 ммоль. Выход 200 мг (20%). Т. пл. 127.5-

129.5°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1382, 1588 (NO₂); 2876, 2929, 2973 (CH); 3070 (CH Ar). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.07 (9H, с, 3CH₃); 3.40-3.50 (1H, м, CH); 4.15-4.25 (1H, м, CH); 4.37-4.50 (2H, м, CH₂); 4.83-4.94 (2H, м, CH₂); 7.55-7.65 (3H, м, Ph); 8.05-8.20 (2H, м, Ph). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 26.4 (CH₃); 50.8 (CH₂N); 53.6 (<u>C</u>CH₃); 68.6 (CH₂O); 80.8 (NCH₂O); 96.0 (C-NO₂); 127.3 (Ph); 129.9 (Ph); 130.5 (Ph); 131.9 (Ph); 165.6 (С-тетразол). Масс-спектр, *m/z* (*I*_{отн},%): 333 [M+H]⁺ (100). Найдено, %: C 54.22; H 6.15; N 25.25. C₁₅H₂₀N₆O₃. Вычислено, %: C 54.21; H 6.07; N 25.29.

5-(1Н-бензо[d][1,2,3]триазол-1-ил)-3-(трет-бутил)-5-нитро-1,3оксазинан (**21b**). Соединение синтезировано согласно общей методике фотоиндуцированного алкилирования. Загрузка исходного бромида 2 ммоль. Выход 244 мг (40%). Т. пл. 84-85°С.

ИК спектр, *v*, см⁻¹: 1364, 1560 (NO₂); 2885, 2939, 2972 (CH); 3033, 3111 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.09 (9H, c, CH₃); 3.97 (1H, д, *J* = 12.5, CCH₂); 4.28 (1H, д, *J* = 8.1, NCH₂); 4.37 (1H, д, *J* = 8.0, NCH₂); 4.58 (1H, д, *J* = 12.5, CCH₂); 4.87 (1H, д, *J* = 12.5, CCH₂); 5.29 (1H, д, *J* = 12.5, CCH₂); 7.54 (1H, т, *J* = 7.7, CHAr); 7.69 (1H, т, *J* = 7.7, CHAr); 7.97 (1H, д, *J* = 8.5, CHAr); 8.19 (1H, д, *J* = 8.5, CHAr). Macc-спектр, *m/z* (*I*_{07H},%): 306 [M+H]⁺ (100). Найдено, %: C 55.12; H 6.15; N 22.85. C₁₄H₁₉N₅O₃. Вычислено, %: C 55.07; H 6.27; N 22.94.

5-(2*H*-бензо[*d*][1,2,3]*триазол-2-ил*)-3-(*трет-бутил*)-5-нитро-1,3оксазинан (**21с**). Образуется в качестве минорного продукта при реакциис 1*H*-бензотриазолом. Выход 73 мг (13%). Т. пл. H_{3C} , N_{N} 114-115°C. ИК спектр, *v*, см⁻¹: 1367, 1567 (NO₂); 2973, 3029, 3070 H_{3C} , $C_{H_{3}}$ (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.10 (9H, c, CH₃); 3.93 (1H, д, *J* = 12.5, CCH₂); 4.24 (1H, д, *J* = 8.1, NCH₂); 4.53 (1H, д, *J* = 12.5, CCH₂); 4.63 (2H, т, *J* = 8.8, CCH₂+NCH₂); 5.16 (1H, д, *J* = 12.5, CCH₂); 7.57 (2H, дд, *J* = 6.7, 3.1, CHAr); 8.02 (2H, дд, *J* = 6.7, 3.1, CHAr). Масс-спектр, *m/z* (*I*_{отн},%): 306 [M+H]⁺ (100). Найдено, %: C 55.15; H 6.22; N 22.90. C₁₄H₁₉N₅O₃. Вычислено, %: C 55.07; H 6.27; N 22.94.

Соединения 22-24 синтезированы согласно ранее описанной процедуре [91]. Выходы составили 70-78%. Спектральные данные совпадают с описанными.

1-(1-трет-Бутил-3-нитро-азетидин-3-ил)-1H-1,2,3-триазол (25а). Загрузка исходного азида 5 ммоль. Выход 967 мг (86%) (метод А). Т. пл. 86-88°С. ИК спектр, *v*, см⁻¹: 1365, 1567 (NO₂); 2975 (CH); 3129 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 0.99 (9H, с, 3CH₃); 4.13 (2H, д, ²*J* = 10.2, CH₂); 4.35 (2H, д, ²*J* = 10.2, CH₂); 7.96 (1H, д, ³*J* = 1.3, CH-4-триазол); 8.68 (1H, д, ³*J* = 1.3, СН-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 23.5 (СН₃); 51.9 (С-СН₃); 55.6 (СН₂); 89.6 (С-NO₂); 126.1 (С-5-триазол); 134.0 (С-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 226 [М+Н]⁺ (100). HRMS (ESI): вычислено для C₉H₁₆N₅O₂ [М+Н]⁺ 226.1299; найдено 226.1305.

Соединения **25b,d** синтезированы согласно ранее описанной процедуре [94]. Выходы составили 78 и 74% соответственно. Спектральные данные совпадают с описанными.

1-(1-трет-Бутил-3-нитро-азетидин-3-ил)-4-циклопропил-1H-1,2,3триазол (**25с**). Выход 663 мг (50%) (метод Б). Т. пл. 62-64°С. ИК спектр, *v*, см⁻¹: 1365, 1565 (NO₂); 2963 (CH); 3096 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 0.83-0.77 (2H, м, CH₂-циклопропил); 0.98 (9H, с, 3CH₃); 0.94-1.00 (2H, м, CH₂-циклопропил); 2.08-1.98 (1H, м, CHциклопропил); 4.08 (2H, д, ²*J* = 10.2, CH₂-N); 4.29 (2H, д, ²*J* = 10.2, CH₂-N); 8.36 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 6.4 (CH-циклопропил); 7.8 (CH₂циклопропил); 23.6 (CH₃); 52.1 (C-CH₃); 55.6 (CH₂-N); 89.6 (C-NO₂); 121.9 (C-5триазол); 149.9 (C-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 266 [M+H]⁺ (100). Найдено, %: C 54.35; H 7.22; N 26.35. C₁₂H₁₉N₅O₂. Вычислено, %: C 54.32; H 7.22; N 26.40.

1-(1-трет-Бутил-3-нитро-азетидин-3-ил)-4-(2-фтор-фенил)-1H-1,2,3триазол (**25е**). Выход 1.196 г (75%) (метод Б). Т. пл. 149-151°С. ИК спектр, *v*, см⁻¹: 1366, 1564 (NO₂); 2972 (CH); 3168 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.00 (9H, с, 3CH₃); 4.22 (2H, д, ²*J* = 9.2, CH₂); 4.38 (2H, д, ²*J* = 9.2, CH₂); 7.37 (2H, т, ³*J* = 8.5, Ph); 7.45-7.50 (1H, H₃C – CH₃ м, Ph); 8.19 (1H, т, ³*J* = 7.6, Ph); 8.99 (1H, с, CH-5-триазол). Спектр ЯМР ¹³C, DMSO-d₆, δ , м.д. (*J*, Гц): 23.5 (CH₃); 51.9 (C-CH₃); 55.7 (CH₂); 90.0 (C-NO₂); 115.9 (д, ²*J* = 21.2, C-C-F); 117.3 (д, ²*J* = 13.0, C-C-F); 124.8 (д, ⁴*J* = 3.2, C-5-триазол); 124.9 (Ph); 127.6 (Ph); 130.2 (д, ²*J* = 8.4, C-C-F); 140.6 (C-4-триазол); 158.5 (д, ¹*J*_{C-F} = 248). Macc-спектр, *m/z* (*I*_{отп},%): 292 [M-N₂]⁺ (17), 320 [M+H]⁺ (100), 361 [M+H+CH₃CN]⁺ (20). HRMS (ESI): вычислено для C₁₅H₁₉FN₅O₂ [M+H]⁺ 320.1517; найдено 320.1518. *1-(1-трет-Бутил-3-нитро-азетидин-3-ил)-4-(2-хлор-фенил)-1H-1,2,3триазол* (**25f**). Выход 1.29 г (77%) (метод Б). Т. пл. 109-111°С. ИК спектр, *v*, см⁻¹: 1367, 1568 (NO₂); 2962 (CH); 3099 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.01 (9H, с, 3CH₃); 4.22 (2H, д, ²*J* = 10.0, CH₂); 4.39 (2H, д, ²*J* = 10.0, CH₂); 7.42-7.54 (2H, м, Ar); 7.61 (1H, д, ³*J* = $H_{3}C - H_{3}$ 7.8, Ar); 8.07-8.13 (1H, м, Ar); 9.17 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 23.5 (CH₃); 51.9 (C-CH₃); 55.7 (CH₂); 90.0 (C-NO₂); 125.2 (C-5триазол); 127.4 (Ar); 128.1 (Ar); 129.7 (Ar); 129.9 (Ar); 130.1 (Ar); 130.6 (Ar); 143.5 (C-4триазол). Масс-спектр, *m/z* (*I*_{отн},%): 308 [M-N₂]⁺ (40), 336 [M]⁺ (100), 338 [M+2] (40), 377 [M+H+CH₃CN]⁺ (25). HRMS (ESI): вычислено для C₁₅H₁₉ClN₅O₂ [M+H]⁺ 336.1222; найдено 336.1216.

1-(1-трет-Бутил-3-нитро-азетидин-3-ил)-4-(3-хлор-фенил)-1H-1,2,3триазол (**25g**). Выход 1.56 г (93%) (метод Б). Т. пл. 124-126°С. ИК спектр, *v*, см⁻¹: 1367, 1568 (NO₂); 2962 (CH); 3099 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.00 (9H, с, 3CH₃); 4.18 (2H, д, ²*J* = 9.8, CH₂); 4.38 (2H, д, ²*J* = 9.8, CH₂); 7.46 (1H, д, ³*J* = 7.7, Ar); 7.54 (1H, т, ³*J* = 7.8, _{H₃C-} Ar); 7.89 (1H, д, ³*J* = 7.8, Ar); 7.96 (1H, с, Ar); 9.23 (1H, с, CH-5-триазол).

Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 23.5 (CH₃); 51.9 (С-CH₃); 55.4 (CH₂); 89.8 (С-NO₂); 123.8 (С-5-триазол); 125.0 (Ar); 128.1 (Ar); 130.8 (Ar); 131.6 (Ar); 133.7 (Ar); 145.6 (С-4триазол). Масс-спектр, *m/z* (*I*_{отн},%): 308 [M-N₂]⁺ (20), 336 [M]⁺ (100), 338 [M+2] (40), 377 [M+H+CH₃CN]⁺ (20). HRMS (ESI): вычислено для C₁₅H₁₉ClN₅O₂ [M+H]⁺ 336.1222; найдено 336.1216.

1-(1-трет-Бутил-3-нитро-азетидин-3-ил)-4-(2,4-дихлор-фенил)-1Н-1,2,3-триазол (**25h**). Выход 1.07 г (58%) (метод Б). Т. пл. 137-139°С. ИК спектр, *v*, см⁻¹: 1367, 1565 (NO₂); 2965 (CH); 3128 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.01 (9H, с, 3CH₃); 4.22 (2H, д, ²*J* = 10.0, CH₂); 4.38 (2H, д, ²*J* = 10.0, CH₂); 7.59 (1H, дд, ³*J* = 8.5, ³*J* = 2.1, Ar); 7.76 (1H, м, ³*J* = 2.0, Ar); 8.15 (1H, д, ³*J* = 8.5, Ar); 9.20 (1H, с, CH-5-триазол).

CI

┿сн₃ Сн₃ Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 23.5 (CH₃); 51.9 (С-CH₃); 55.7 (CH₂); 90.0 (С-NO₂); 125.3 (С-5-триазол); 127.2 (Ar); 127.7 (Ar); 129.6 (Ar); 130.8 (Ar); 131.4 (Ar); 133.6 (Ar); 142.5 (С-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 370 [M]⁺ (60), 372 [M+2] (100), 374 [M+4] (10), 411 [M+H+CH₃CN]⁺ (60). HRMS (ESI): вычислено для C₁₅H₁₈Cl₂N₅O₂ [M+H]⁺ 370.0832; найдено 370.0822.

1-(1-трет-Бутил-3-нитро-азетидин-3-ил)-4-[4-(трифторметил)фенил]-1H-1,2,3-триазол (**25i**). Выход 1.6 г (87%) (метод Б). Т. пл. 149-150°С. ИК спектр, *v*, см⁻¹: 1333, 1589 (NO₂); 2975 (CH); 3111 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.01 (9H, с, 3CH₃); 4.20 (2H, д, ²*J* = 9.8, CH₂); 4.39 (2H, д, ²*J* = 9.8, CH₂); 7.87 (2H, д, ³*J* = 8.2, Ph); 8.14 (2H, д, ³*J* = 8.2, Ph); 9.30 (1H, с, CH-5-триазол). Спектр ЯМР ¹³C, MSO-d₆, δ , м.д.(*J*, Гц): 23.66 (CH₃); 52.15 (C-CH₃); 55.71 (CH₂); 89.92 (C-NO₂); 122.36 (C-5-триазол); 124.16 (к, ¹*J*_{C-F} = 272.0); 126.03 (Ph); 126.13 (к, ³*J*_{C-F} = 4.0); 126.15 (Ph); 128.65 (к, ²*J*_{C-F} = 31.9); 133.61 (к, ⁵*J*_{C-F} = 1.4); 145.64 (C-4-триазол). Macc-спектр, *m*/*z* (*I*_{отн},%): 370 (100) [M+H]⁺, 411 [M+H+CH₃CN]⁺ (20). HRMS (ESI): вычислено для C₁₆H₁₉F₃N₅O₂ [M+H]⁺370.1485; найдено 370.1485.

I-(1-трет-Бутил-3-нитро-азетидин-3-ил)-4-[3-(трифторметил)фенил]-1H-1,2,3-триазол (**25j**). Выход 1.5 г (81%) (метод Б). Т. пл. 94-95°С. ИК спектр, *v*, см⁻¹: 1328, 1596 (NO₂); 2978 (CH); 3144 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.01 (9H, с, 3CH₃); 4.19 (2H, д, o_{2N} , N-N²*J* = 10.1, CH₂); 4.39 (2H, д, ²*J* = 10.1, CH₂); 7.71-7.80 (2H, м, Ar); 8.24 (2H, т, ³*J* = 3.6, Ar); 9.33 (1H, с, CH-5-триазол). Спектр ЯМР ¹³C, DMSO-H₃C - CH₃ d₆, δ , м.д.(*J*, Гц): 23.52 (CH₃); 51.93 (C-CH₃); 55.45 (CH₂); 89.83 (C-NO₂); 121.74 (к, ³*J*_{C-F} = 3.9); 123.52 (C-5-триазол); 123.83 (к, ¹*J*_{C-F} = 272.3); 124.82 (к, ³*J*_{C-F} = 3.9); 129.05 (к, ⁵*J*_{C-F} = 1.3); 129.82 (к, ²*J*_{C-F} = 32.05); 130.10 (Ph); 130.62 (Ph); 146.2 (C-4триазол). Масс-спектр, *m/z* (*I*_{отн}%): 370 (100) [M+H]⁺, 411 [M+H+CH₃CN]⁺ (20). HRMS (ESI): вычислено для C₁₆H₁₉F₃N₅O₂ [M+H]⁺370.1485; найдено 370.1485.

1-(1-трет-Бутил-3-нитро-азетидин-3-ил)-4-(3-метоксифенил)-1Н-1,2,3-триазол (25к). Выход 1.01 г (61%) (метод Б). Т. пл. 114-116°С. ИК спектр, v, см⁻¹: 1370, 1596 (NO₂); 2962 (CH); 3115 (CHAr). Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Γ ц): 1.01 (9H, c, 3CH₃); 3.84 (3H, c, O-CH₃); O₂N 4.19 (2H, д, ²*J* = 10.1, CH₂); 4.38 (2H, д, ²*J* = 10.1, CH₂); 6.98 (1H, дд, ³*J* = 8.1, ${}^{3}J = 2.1$, Ar); 7.41 (1H, T, ${}^{3}J = 7.9$, Ar); 7.46-7.54 (2H, M, Ar); 9.18 (1H, $H_{3}C$ CH₃ ĊH с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 23.7 (С-CH₃); 52.1 (C-CH₃); 55.2 (O-CH₃); 55.7 (CH₂); 89.9 (C-NO₂); 110.6 (Ar); 114.4 (Ar); 117.7 (Ar); 122.9 (С-5-триазол); 130.3 (Ar); 130.9 (Ar); 146.9 (С-4-триазол); 159.7 (Ar). Масс-спектр, *m/z* (*I*_{отн},%): 332 [M+H]⁺ (100). Найдено, %: С 57.95; Н 6.32; N 21.15. С₁₆H₂₁N₅O₃. Вычислено, %: С 57.99; Н 6.39; N 21.13.

2-(1-(1-(трет-Бутил)-3-нитроазетидин-3-ил)-1Н-1,2,3-триазол-4ил)пиридин (251). Выход 906 мг (60%) (метод Б). Т. пл. 149-150°С. ИК спектр, v, см⁻¹: 1367, 1564 (NO₂); 2975 (CH); 3129 (CHAr). Спектр 0.1 ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Γ ц): 0.98 (9H, c, CH₃); 4.20 (2H, д, ²*J* = 10.4, CH₂); 4.35 (2H, д, ²*J* = 10.4, CH₂); 7.40 (1H, т, *J* = 6.4, Ar); 7.93 (1H, т, *J* = H₂C 7.8, Ar); 8.10 (1H, μ , J = 8.0, Ar); 8.64 (1H, c, Ar); 9.18 (1H, c, CH-5-ĊH, триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 23.5 (CH₃); 51.9 (CCH₃); 55.6 (CH₂); 89.9

(CNO₂); 119.8 (Ar); 123.4 (Ar); 124.5 (С-5-триазол); 137.1 (Ar); 147.8 (С-4-триазол); 148.8 (Ar); 149.6 (Ar). Macc-cnektp, m/z (I_{OTH} ,%): 303 [M+H]⁺ (100). HRMS (ESI): вычислено для C₁₄H₁₉N₆O₂ [M+H]⁺303.1564; найдено 303.1573.

1-Бензил-4-[1-(1-трет-бутил-3-нитроазетидин-3-ил)-1Н-1,2,3*триазол-4-ил]пиперидин* (25m). Выход 1.23 г (62%) (метод Б). Т. пл. 122-124°С. ИК спектр, v, см⁻¹: 1367, 1565 (NO₂); 2925, 2964 (СН). Спектр ЯМР ¹Н, DMSO-d₆, δ, м.д. (*J*, Гц): 0.96 (9Н, с, CH₃); 1.68 (2H, ддд, J = 15.0, J = 12.4, J = 3.4, CH₂-пиперидин); 1.96 $(2H, д, J = 11.6, CH_2$ -пиперидин); 2.13 $(2H, т, J = 11.0, CH_2$ пиперидин); 2.73-2.79 (1H, м, CH-пиперидин); 2.87 (2H, д, *J* = 12.0,

H₂C ĊH

CH2

СН₂-пиперидин); 3.51 (2H, c, C<u>H</u>₂Ph); 4.09 (2H, д, ${}^{2}J$ = 10.0, CH₂); 4.29 (2H, д, ${}^{2}J$ = 10.0, CH₂); 7.22-7.32 (5H, м, Ph); 8.41 (1H, c, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 24.2 (CH₃); 31.9 (2,6-CH₂-пиперидин); 33.2 (CH-пиперидин); 52.5 (CCH₃); 53.2 (3,5-CH₂-пиперидин); 56.1 (CH₂); 62.7 (<u>C</u>H₂Ph); 90.3 (CNO₂); 122.5 (C-5-триазол); 127.3 (C-3,4,5 Ph); 128.5 (C-6 Ph); 129.2 (C-1 Ph); 152.5 (C-4-триазол). Масс-спектр, *m/z* ($I_{\text{отн}}$ %): 399 [M+H]⁺ (100). HRMS (ESI): вычислено для C₁₄H₂₀N₆O₂ [M+H]⁺ 399.2503; найдено 399.2497.

Метил 1-(1-(трет-бутил)-3-нитроазетидин-3-ил)-1H-1,2,3триазол-4-карбоксилат (**25n**). Выход 1.39 г (70%) (метод Б). Т. пл. 145-147°С. Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (J, Гц): 0.99 (9H, с, CH₃); 3.90 (3H, с, CH₃O); 4.18 (2H, д, ${}^{2}J$ = 10.1, CH₂); 4.34 (2H, д, ${}^{2}J$ = 10.1, CH₂); 9.39 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 23.6 (C<u>C</u>H₃); 52.05 (<u>C</u>CH₃); 52.07 (OCH₃); 55.8 (CH₂); 90.0 (CNO₂); 130.9 (C-5-триазол); 139.4 (C-4-триазол); 160.0 (CO). Спектр ЯМР ¹⁵N, DMSO-d₆, δ , м.д.: 35.9 (N-*t*Bu); 248.2 (N-1-триазол); 361.3 (N-3-триазол); 367.8 (N-2-триазол); 381.5 (NO₂). Масс-спектр, *m*/*z* (I_{0TH} ,%): 284 [M+H]⁺ (100). Найдено, %: С 46.70; Н 6.08; N 24.77. C₁₁H₁₇N₅O₄. Вычислено, %: С 46.64; H 6.05; N 24.72.

Соединение **26** синтезировано согласно ранее описанной процедуре [170]. Выход 900 мг (40%). Спектральные данные совпадают с описанными.

2-((1-трет-Бутил)-3-нитроазетидин-3-ил)-5-фенил-2Н-тетразол

(27а). Соединение синтезировано согласно общей методике фотоиндуцированного алкилирования. Загрузка исходного бромида 0.42 ммоль. Выход 80 мг (63%). Т. пл. 105-107°С. ИК спектр, *v*, см⁻¹: 1368, 1562 (NO₂); 2872, 2932, 2967 (CH); 3058 (CHAr). Спектр ЯМР ¹H, $H_{3}C \xrightarrow{N-N}_{CH_{3}}$ DMSO-d₆, δ , м.д. (*J*, Гц): 1.01 (9H, c, 3CH₃); 4.29 (2H, д, *J* = 10.6, CH₂); 4.48 (2H, д, *J* = 10.6, CH₂); 7.56-7.65 (3H, м, Ph); 8.08-8.18 (2H, м, Ph). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 23.5 (CH₃); 51.9 (<u>C</u>CH₃); 52.1 (CH₂); 91.5 (CNO₂); 125.5 (Ph); 126.8 (Ph); 129.2 (Ph); 131.3 (Ph); 165.2 (С-5-тетразол). Масс-спектр, *m/z* (*I*_{отн},%): 303 [M+H]⁺ (100). Найдено, %: С 55.60; Н 6.05; N 27.70. С₁₄H₁₈N₆O₂. Вычислено, %: С 55.62; Н 6.00; N 27.80.

1-((1-трет-Бутил)-3-нитроазетидин-3-ил)-5-фенил-1Н-тетразол

(28а). Выход 9 мг (7%) (Образуется в качестве минорного продукта при получении 27а). Т. пл. 114-117°С. ИК спектр, *v*, см⁻¹: 1363, 1563 (NO₂); 2852, 2926, 2960 (CH); 3060 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 0.98 (9H, с, 3CH₃); 4.27 (2H, д, *J* = 10.6, CH₂); 4.45 (2H, д, *J* = 10.6, CH₂); 7.44-7.55 (3H, м, Ph); 8.10-8.23 (2H, м, Ph). Спектр ЯМР ¹³С, DMSOd₆, δ , м.д.: 23.5 (CH₃); 51.9 (<u>C</u>CH₃); 55.3 (CH₂); 89.8 (CNO₂); 122.2 (Ph); 128.6 (Ph); 129.3 (Ph); 132.0 (Ph); 154.8 (C-5-тетразол). Масс-спектр, *m/z* (*I*_{отн},%): 303 [M+H]⁺ (30), 344 [M+H+41]⁺ (100%). Найдено, %: C 55.65; H 6.07; N 27.75. C₁₄H₁₈N₆O₂. Вычислено, %: C 55.62; H 6.00; N 27.80.

1-(1-(трет-Бутил)-3-нитроазетидин-3-ил)-1Н-тетразол (**28b**). Выход 40 мг (42%). Т. пл. 95-96°С. ИК спектр, *v*, см⁻¹: 1364, 1579 (NO₂); 2880, 2929, 2970 (CH); 3132 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гп): 0.99 (9H, с, 3CH₃); 4.15 (2H, д, *J* = 9.9, CH₂); 4.38 (2H, д, *J* = 9.9, CH₂); 9.98 (1H, с, CH-тетразол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 23.5 (CH₃); 51.9 (<u>C</u>CH₃); 55.8 (CH₂); 88.3 (CNO₂); 145.0 (C-5-тетразол). Масс-спектр, *m/z* (*I*_{отн},%): 227 [M+H]⁺ (100). Найдено, %: C 42.40; H 6.17; N 37.10. C₈H₁₄N₆O₂. Вычислено, %: C 42.47; H 6.24; N 37.15.

2-(1-(трет-Бутил)-3-нитроазетидин-3-ил)-2H-тетразол (27b). Соединение образуется в качестве минорного продукта при получении **28b**. Выход 26 мг (28%). Т. пл. 56-58°С. ИК спектр, v, см⁻¹: 1368, 1565 (NO₂); 2874, 2933, 2969 (CH); 3135 (CHAr). Спектр ЯМР 13 С, DMSO-d₆, δ , м.д. (J, Γ ц): 1.00 (9H, с, 3CH₃); 4.22 (2H, д, J = 10.0, CH₂); 4.46 (2H, д, J = 9.9, CH₂); 9.36 (1H, с, CH-тетразол). Спектр ЯМР 13 С, DMSO-d₆, δ , м.д.: 23.5 (CH₃); 52.1 (<u>C</u>CH₃); 55.1 (CH₂); 91.2 (CNO₂); 154.4 (С-5-тетразол). Масс-спектр, *m/z* (*I*_{отн},%): 227 [M+H]⁺ (100). Найдено, %: С 42.42; Н 6.15; N 37.09. C₈H₁₄N₆O₂. Вычислено, %: С 42.47; Н 6.24; N 37.15.

Дезоксигенирование нитросодержащих алигетероциклов

Общая методика получения. Смесь 1-(1-трет-бутил-3-нитроазетидин-3-ил)-1*H*-1,2,3-триазола **25** (либо 5-нитро-1,3-диоксана **4,8**) (1 ммоль) и триэтилфосфита (1328 мг, 8 ммоль) в 3 мл бензола перемешивают при кипении. По завершении реакции (5–72 часов, контроль TCX) растворитель отгоняют при пониженном давлении. Остаток чистят методом колоночной хроматографии на силикагеле, используя в качестве подвижной фазы смесь этилацетата и *н*-гексана (1:5). При необходимости продукт кристаллизуют из этилового спирта.

1-(1-трет-Бутил-2,5-дигидро-1H-имидазол-4-ил)-1H-1,2,3-триазол (**29а**). Выход 170 мг (88%). Т. пл. 65-71°С. ИК спектр, *v*, см⁻¹: 1682 (С=N). Спектр ЯМР ¹H, CDCl₃, δ , м.д. (*J*, Гц): 1.15 (9H, с, CH₃); 4.34 (2H, т, ⁴*J* = 4.8, CH₂-C); 4.86 (2H, т, ⁴*J* = 4.8, CH₂-N=); 7.75 (1H, с, CH-4-триазол); 8.32 ^{H₃C} – ^{CH₃} (1H, с, CH-5-триазол). Спектр ЯМР ¹³C, CDCl₃, δ , м.д.: 26.1 (CH₃); 51.3 (CH₂-C); 52.5 (C-CH₃); 74.9 (CH₂-N=); 121.3 (C-5-триазол); 134.2 (C-4-триазол); 158.3 (-C=N). Масс-спектр, *m/z* (*I*_{отн},%): 194 [M+H]⁺ (100). Найдено, %: C 55.92; H 7.79; N 36.29. С₉H₁₅N₅. Вычислено, %: C 55.94; H 7.82; N 36.24.

1-(1-трет-Бутил-2,5-дигидро-1H-имидазол-4-ил)-4триметилсиланил-1H-1,2,3-триазол (**29b**). Выход 230 мг (87%). Т. пл. 80-86°С. ИК спектр, *v*, см⁻¹: 1683 (С=N). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 0.31 (9H, c, Si-CH₃); 1.10 (9H, c, CH₃); $H_3C \leftarrow H_3$ 4.24 (2H, т, ⁴*J* = 4.8, CH₂-C); 4.79 (2H, т, ⁴*J* = 4.8, CH₂-N=); 8.68 (1H, c, CH-5-триазол). Спектр ЯМР ¹³C, DMSO-d₆, δ , м.д.: –1.52 (Si-CH₃); 25.6 (CH₃-C); 50.9 (CH₂-C); 51.8 (C-CH₃); 74.2 (CH₂-N=); 127.7 (C-5-триазол); 146.2 (C-4-триазол); 157.3 (- C=N). Масс-спектр, *m/z* (*I*_{отн},%): 266 [M+H]⁺ (100). Найдено, %: С 54.33; Н 8.74; N 26.39. С₁₂H₂₃N₅Si. Вычислено, %: С 54.30; Н 8.73; N 26.38.

1-(1-трет-Бутил-2,5-дигидро-1Н-имидазол-4-ил)-4-циклопропил-1Н-1,2,3-триазол (**29с**). Выход 221 мг (95%). Т. пл. 50-53°С. ИК спектр, *v*, см⁻¹: 1672 (C=N). Спектр ЯМР ¹Н, DMSO-d₆, δ, м.д. (*J*, Гц): 0.77-0.84 (2H, м, циклопропил); 0.93-1.00 (2H, м, циклопропил); 1.09 (9H, ^H с, CH₃); 1.99-2.03 (1H, м, циклопропил); 4.20 (2H, т, ⁴*J* = 4.8, CH₂-C);

4.77 (2H, т, ⁴*J* = 4.8, CH₂-N=); 8.39 (1H, с, CH-5-триазол). Спектр ЯМР ¹³C, DMSO-d₆, δ, м.д.: 6.1 (CH- циклопропил); 7.6 (CH₂- циклопропил); 25.7 (CH₃); 50.5 (<u>C</u>H₂-C); 51.8 (<u>C</u>-CH₃); 74.1 (CH₂-N=); 117.7 (C-5-триазол); 150.2 (C-4-триазол); 157.4 (-C=N). Массспектр, *m/z* (*I*_{отн},%): 206 [M-N₂]⁺ (70), 234 [M+H]⁺ (100). HRMS (ESI): вычислено для С₁₂H₂₀N₅ [M+H]⁺234.1718; найдено 234.1715.

ĊΗ₃

7.93 (2H, м, Ar); 8.52 (1H, с, CH-5-триазол). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.09 (9H, с, CH₃); 4.27 (2H, т, ⁴*J* = 4.8, CH₂-C); 4.82 (2H, т, ⁴*J* = 4.8, CH₂-N=); 7.35-7.41 (1H, м, Ph); 7.43-7.51 (2H, м, Ph); 7.99-8.02 (2H, м, Ph); 9.23 (1H, с, CH-5-триазол). Спектр ЯМР ¹³C, DMSO-d₆, δ , м.д.: 25.7 (CH₃); 50.7 (CH₂-C); 51.8 (C-CH₃); 74.2 (CH₂-N=); 118.3 (C-5-триазол); 125.6 (Ph); 128.4 (Ph); 128.7 (Ph); 129.3 (Ph); 147.0 (C-4триазол); 157.5 (-C=N). Масс-спектр, *m*/*z* (*I*_{отн},%): 270 [M+H]⁺ (100). HRMS (ESI): вычислено для C₁₅H₂₀N₅ [M+H]⁺270.1718; найдено 270.1725. *1-(1-трет-Бутил-2,5-дигидро-1H-имидазол-4-ил)-4-(2фторфенил)-1H-1,2,3-триазол* (**29е**). Выход 178 мг (62%). Т. пл. 91-95°С. ИК спектр, *v*, см⁻¹: 1683 (С=N). Спектр ЯМР ¹H, DMSOd₆, δ , м.д. (*J*, Гц): 1.12 (9H, c, CH₃); 4.30 (2H, т, ⁴*J* = 4.9, CH₂-C); $H_{3}C \xrightarrow{\mathsf{N}}_{\mathsf{CH}_{3}}$ 4.84 (2H, т, ⁴*J* = 4.9, CH₂-N=); 7.33-7.42 (2H, м, Ar); 7.45-7.54 (1H, м, Ar); 8.16 (1H, м, Ar); 8.78 (1H, д, ⁵*J*_{H,F} = 3.2, CH-5-триазол). Спектр ЯМР ¹³C, DMSOd₆, δ , м.д.: 25.7 (CH₃); 50.7 (CH₂-C); 51.9 (C-CH₃); 74.2 (CH₂-N=); 115.9 (д, ²*J* = 21.2, C-

C-F); 120.1 (к, ${}^{3}J_{C-F} = 12.3$); 124.8 (C-5-триазол); 127.8 (Ar); 130.4 (д, ${}^{2}J_{C-F} = 8.3$ C-F); 140.7 (C-4-триазол); 157.4 (-C=N) 158.4 (д, ${}^{1}J_{C-F} = 248$, C-F). Масс-спектр, *m/z* ($I_{\text{отн}}$,%): 260 [M-N₂]⁺ (100), 288 [M+H]⁺ (92), 329 [M+H+CH₃CN]⁺ (10). Найдено, %: C 62.79; H 6.34; N 24.28. C₁₅H₁₈FN₅. Вычислено, %: C 62.70; H 6.31; N 24.34.

1-(1-трет-Бутил-2,5-дигидро-1Н-имидазол-4-ил)-4-(2хлорфенил)-1Н-1,2,3-триазол (**29f**). Выход 206 мг (68%). Т. пл. 101-105°С. ИК спектр, *v*, см⁻¹: 1682 (С=N). Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гц): 1.11 (9H, c, CH₃); 4.31 (2H, т, ⁴*J* = 4.8, H₃c - CH₃ CH₂-C); 4.84 (2H, т, ⁴*J* = 4.8, CH₂-N=); 7.42-7.55 (2H, м, Ar); 7.58-

7.66 (1Н, м, Аг); 8.07 (1Н, дд, ³J = 7.4, ³J = 1.8, Аг); 8.99 (1Н, с, СН-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 25.7 (СН₃); 50.7 (СН₂-С); 51.9 (С-СН₃); 74.2 (СН₂-N=); 120.6 (Аг); 120.8 (Аг); 127.4 (Аг); 127.8 (С-5-триазол); 130.0 (Аг); 130.1 (Аг); 130.9 (Аг); 143.5 (С-4-триазол); 157.5 (-С=N). Масс-спектр, *m/z* (*I*_{отн},%): 276 [M-N₂]⁺ (100), 304 [M+H]⁺ (90), 306 [M+2] (30), 345 [M+H+CH₃CN]⁺ (20). Найдено, %: С 59.35, Н 6.04, N 23.02. С₁₅H₁₈ClN₅. Вычислено, %: С 59.30; Н 5.97; N 23.05.

1-(1-трет-Бутил-2,5-дигидро-1H-имидазол-4-ил)-4-(3хлорфенил)-1H-1,2,3-триазол (**29g**). Выход 200 мг (66%). Т. пл. 147-150°С. ИК спектр, *v*, см⁻¹: 1682 (С=N). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.11 (9H, c, CH₃); 4.28 (2H, т, ⁴*J* = 4.7, H₃C – CH₃ CH₂-C); 4.84 (2H, т, ⁴*J* = 4.7, CH₂-N=); 7.45 (1H, д, ³*J* = 8.0, Ar);

7.52 (1H, т, ${}^{3}J$ = 7.8, Ar); 7.97 (1H, д, ${}^{3}J$ = 7.7, Ar); 8.06 (1H, с, Ar); 9.30 (1H, с, CH-5-

триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 25.7 (CH₃); 50.7 (CH₂-C); 51.9 (C-CH₃); 74.3 (CH₂-N=); 124.1 (Ar); 125.3 (C-5-триазол); 128.2 (Ar); 130.7 (Ar); 131.4 (Ar); 133.6 (Ar); 145.7 (C-4-триазол); 157.5 (-C=N). Масс-спектр, *m/z* (*I*_{отн},%): 276 [M-N₂]⁺ (85), 304 [M+H]⁺ (100), 306 [M+2] (30), 345 [M+H+CH₃CN]⁺ (15). Найдено, %: C 59.35, H 6.04, N 23.02. C₁₅H₁₈ClN₅. Вычислено, %: C 59.30; H 5.97; N 23.05.

1-(1-трет-Бутил-2,5-дигидро-1Н-имидазол-4-ил)-4-(2,4дихлорфенил)-1Н-1,2,3-триазол (**29h**). Выход 303 мг (90%). Т. пл. 142-147°С. ИК спектр, *v*, см⁻¹: 1682 (С=N). Спектр ЯМР ¹Н, DMSO-d₆, δ, м.д. (*J*, Гц): 1.18 (СН₃, с, 9H); 4.39 (2H, т, ⁴*J*= 4.8, CH₂-C); 4.91 (2H, т, ⁴*J* = 4.8, CH₂-N=); 7.39 (1H, дд, ³*J* = 8.5, ³*J* =

1.9, Ar); 7.51 (1H, д, ³*J* = 1.9, Ar); 8.24 (1H, д, ³*J* = 8.5, Ar); 8.91 (1H, с, CH-5-триазол). Спектр ЯМР ¹³C, DMSO-d₆, δ, м.д.: 23.7 (CH₃); 50.7 (CH₂-C); 51.4 (C-CH₃); 74.2 (CH₂-N=); 122.4 (C-5-триазол); 127.4(Ar); 127.8 (Ar); 130.0(Ar); 130.1(Ar); 130.6 (Ar); 150.9 (C-4-триазол); 157.11 (-C=N). Масс-спектр, *m/z* (*I*_{отн},%): 312 [M-N₂]⁺ (10), 338 [M]⁺ (70), 340 [M+2] (100), 342 [M+4] (10), 345 [M+H+CH₃CN]⁺ (15). Найдено, %: C 53.35, H 5.11, N 20.69. C₁₅H₁₇Cl₂N₅. Вычислено, %: C 53.26, H 5.07, N 20.71.

1-(1-трет-Бутил-2,5-дигидро-1H-имидазол-4-ил)-4-(4трифторметил-фенил)-1H-1,2,3-триазол (**29i**). Выход 243 мг (72%). Т. пл. 127-130°С. ИК спектр, v, см⁻¹: 1682 (С=N). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.12 (СН₃, с, 9H); 4.29 (2H, т, ⁴*J* = 4.8, CH₂-C); 4.85 (2H, т, ⁴*J* = 4.8, CH₂-N=); 7.84

(2H, д, ${}^{3}J = 8.2$, Ar); 8.22 (2H, д, ${}^{3}J = 8.2$, Ar); 9.37 (1H, с, CH-5-триазол). Спектр ЯМР 13 С, DMSO-d₆, δ , м.д.: 25.7 (CH₃); 50.7 (CH₂-C); 51.9 (C-CH₃); 74.3 (CH₂-N=); 119.8 (С-5-триазол); 123.9 (к, ${}^{1}J_{C-F} = 272.0$); 125.7 (к, ${}^{3}J_{C,F} = 3.5$); 126.2 (Ar); 128.6 (к, ${}^{2}J_{C,F} = 32$ Гц); 133.3 (Ar); 145.6 (С-4-триазол); 157.5 (-C=N). Масс-спектр, *m/z* ($I_{\text{отн}}$,%): 310 [М-N₂]⁺ (20), 338 [М+Н]⁺ (100), 345 [М+H+CH₃CN]⁺ (15). HRMS (ESI): вычислено для C₁₆H₁₉F₃N₅ [М+Н]⁺ 338.1592; найдено 338.1597. *1-(1-трет-Бутил-2,5-дигидро-1Н-имидазол-4-ил)-4-(3трифторметил-фенил)-1H-1,2,3-триазол* (**29j**). Выход 252 мг (75%). Т. пл. 114-117°С. ИК спектр, v, см⁻¹: 1677 (С=N). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гп): 1.12 (9H, с, CH₃); 4.29 (2H, т, $H_3C - CH_3 - CH_3$ ⁴*J* = 4.6, CH₂-C); 4.85 (2H, т, ⁴*J* = 4.6, CH₂-N=); 7.65-7.83 (2H, м, Ar); 8.27-8.41 (2H, м, Ar); 9.41 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 25.7 (CH₃); 50.7 (CH₂-C); 51.9 (С-CH₃); 74.2 (CH₂-N=); 119.6 (С-5-триазол); 122.0 (к, ³*J*_{CF}= 3.8); 123.9 (к, ¹*J*_{CF} = 272.6); 124.9 (к, ³*J*_{CF}= 3.8); 129.4 (к, ⁵*J*_{CF}= 1.2); 129.8 (к,

 ${}^{2}J_{C-F} = 31.7$); 130.5 (Ar); 145.6 (C-4-триазол); 157.5 (-C=N). Масс-спектр, *m/z* ($I_{\text{отн}}$,%): 310 [M-N₂]⁺ (20), 338 [M+H]⁺ (100), 345 [M+H+CH₃CN]⁺ (15). HRMS (ESI): вычислено для C₁₆H₁₉F₃N₅ [M+H]⁺ 338.1592; найдено 338.1596.

1-(1-трет-Бутил-2,5-дигидро-1H-имидазол-4-ил)-4-(3-метоксифенил)-1H-1,2,3-триазол (**29k**). Выход 203 мг (68%). Т. пл. 108-111°С. ИК спектр, *v*, см⁻¹: 1671 (С=N). Спектр ЯМР ¹H, DMSOd₆, δ , м.д. (*J*, Гц): 1.12 (9H, c, C-CH₃); 3.83 (3H, c, O-CH₃); 4.28 (2H, т, ⁴*J*_{H,H} = 4.8, CH₂-C); 4.84 (2H, т, ⁴*J*_{H,H} = 4.8, CH₂-N=); 6.96

(1H, дд, ${}^{3}J_{H,H} = 8.2$, ${}^{3}J_{H,H} = 2.4$, Ar); 7.39 (1H, т, ${}^{3}J_{H,H} = 7.9$, Ar); 7.52-7.59 (2H, м, Ar); 9.22 (1H, с, CH-5-триазол). Спектр ЯМР 13 С, DMSO-d₆, δ , м.д.: 25.7 (CH₃); 50.7 (CH₂-C); 51.9 (C-CH₃); 55.1 (O-CH₃); 74.2 (CH₂-N=); 110.9 (Ar); 114.4 (Ar); 117.9 (Ar); 118.6 (C-5-триазол); 129.9 (Ar); 130.6 (Ar); 146.9 (C-4-триазол); 157.5 (-C=N); 159.6 (Ar). Масс-спектр, *m*/*z* ($I_{\text{отн}}$,%): 272 [M-N₂]⁺ (100), 300 [M+H]⁺ (92). HRMS (ESI): вычислено для C₁₆H₂₂N₅O [M+H]⁺ 300.1824; найдено 300.1824.

1-Бензил-4-[1-(1-трет-бутил-2,5-дигидро-1H-имидазол-4ил)-1H-1,2,3-триазол-4-ил]типеридин (**291**). Выход 256 мг (70%). Т. пл. 122-124°С. ИК спектр, v, см⁻¹: 1670 (С=N). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (J, Гц): 1.07 (9H, с, CH₃); 1.68 (2H, дк, J = 12.4, J = 3.6, CH, 2-и 6-пиперидин); 1.92

(2H, д, *J* = 11.2, CH, 3- и 5-пиперидин); 2.08(2H, т, *J* = 11.4, CH, 2-и 6-пиперидин); 2.74

(1H, тт, *J* = 11.5, *J* = 3.8, *J* = 3.6, CH, 1-пиперидин); 2.84 (2H, д, *J* = 11.6, CH, 3- и 5пиперидин); 3.47 (2H, c, CH₂); 4.20 (2H, т, ⁴*J* = 4.8, CH₂-C); 4.76 (2H, т, ⁴*J* = 4.8, CH₂-N=);7.20-7.30 (5H, м, Ph); 8.40 (1H, c, CH-5-триазол). Спектр ЯМР ¹³C, DMSO-d₆, δ, м.д.: 26.3 (CH₃); 31.8 (CCH₂CH₂); 33.2 (CH₂CHCH₂); 51.3 (CCH₂N); 52.5 (C-CH₃); 53.3 (CH₂CH₂N); 62.9 (NCH₂Ph); 74.8 (CH₂-N=); 118.8 (C-5-триазол); 127.2 (Ph); 128.5 (Ph); 129.2 (Ph); 139.1 (Ph); 152.8 (C-4-триазол); 158.18 (-C=N). Масс-спектр, *m/z* (*I*_{отн},%): 338 [M-N₂]⁺ (10), 367 [M+H]⁺ (100). Найдено, %: C 68.88; H 8.30; N 22.98. C₂₁H₃₀N₆. Вычислено, %: C 68.82; H 8.25; N 22.93.

Метил 1-(1-(трет-бутил)-2,5-дигидро-1H-имидазол-4-ил)-1H-1,2,3триазол-4-карбоксилат (**29m**). Выход 238 мг (95%) (выход смеси 1H и 2H-1,2,3-триазола, содержание **29m**- 83%). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (J, Γ ц): 1.10 (9H, c, C-CH₃); 3.89 (3H, c, O-CH₃); 4.27 (2H, т, ⁴J = 5.0, CH₂-C); 4.83 (2H, т, ⁴J = 5.0, CH₂-N=); 9.18 (1H, c, CH-5-триазол). Масс-спектр, m/z ($I_{\text{отн}}$ %): 252 [M+H]⁺ (100).

Метил 2-(1-(трет-бутил)-2,5-дигидро-1*H*-имидазол-4-ил)-2*H*-1,2,3триазол-4-карбоксилат (**30n**). Выход 238 мг (95%) (выход смеси 1*H* и 2*H*-1,2,3-триазола, содержание **30n**- 17%). Спектр ЯМР ¹H, DMSOd₆, δ , м.д. (*J*, Гц): 1.10 (9H, c, C-CH₃); 3.92 (3H, c, O-CH₃); 4.22 (2H, т, _{H₃C} ⁴*J* = 5.0, CH₂-C); 4.85 (2H, т, ⁴*J* = 5.0, CH₂-N=); 8.60 (1H,c, CH-5триазол). Масс-спектр, *m/z* (*I*_{отн}%): 252 [M+H]⁺ (100).

2-(1-(трет-Бутил)-1Н-имидазол-4-ил)-5-фенил-2Н-тетразол

(**35а**). Выход 40 мг (45%) (загрузка исходного азетидина 0.33 ммоль). Светло-желтое масло. ИК спектр, *v*, см⁻¹: 1596 (C=N); 3115 (C-HAr). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.67 (9H, с, C-CH₃); 7.45-7.53 (3H, м, Ph); 7.75 (1H, д, ⁴J = 1.5, CH-5-

имидазол); 7.81 (1H, д, ⁴*J* = 1.5, CH-2-имидазол); 8.21-8.32 (2H, м, Ph). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 30.5 (CH₃); 56.4 (С-CH₃); 108.4 (С-5-имидазол); 127.1 (Ph); 127.3

(Ph); 128.7 (Ph); 130.3 (Ph); 133.1 (С-2-имидазол); 137.6 (С-4-имидазол); 164.9 (Стетразол). Масс-спектр, *m/z* (*I*_{отн},%): 269 [M+H]⁺ (100). Найдено, %: С 62.62; Н 6.07; N 31.25. С₁₄H₁₆N₆. Вычислено, %: С 62.67; Н 6.01; N 31.32.

6-(1H-1,2,3-Триазол-1-ил)-4,7-дигидро-1,3,5-диоксазепин (**36a**). Выход 34 мг (41%). Т. пл. 102-105°С (ЕtOH). Ик спектр, v, см⁻¹: 1009, 1097 (С– O); 1694 (С=N); 2906, 2954, 2991 (С–Н); 3127, 3164 (=С–Н). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 4.99 (2H, с, ОСН₂O); 5.25 (2H, т, ⁵*J* = 1.6, ССН₂O); 5.41 (2H, т, ⁵*J* = 1.6, NCH₂O); 7.88 (1H, д, ³*J* = 1.2, СН-4-триазол); 8.53 (1H, д, ³*J* = 1.2, СН-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 65.2 (С-7); 77.9 (С-4); 95.0 (С-2); 121.9 (С-5-триазол); 133.9 (С-4-триазол); 152.1 (С-6). Массспектр, *m*/*z* (*I*_{отн},%): 169 [М+Н]⁺ (100). Найдено, %: С 42.95; H 4.91; N 33.12. С₆H₈N₄O₂. Вычислено, %: С 42.86; H 4.80; N 33.32.

2-Метил-6-(1H-1,2,3-триазол-1-ил)-4,7-дигидро-1,3,5-диоксазепин (**36b**). Выход 66 мг (72%). Т. пл. 67-70°С (ЕtOH). ИК спектр, v, см⁻¹: 1004, 1119 (С–О); 1699 (С=N); 2915, 2988 (С–Н); 3135, 3160 (=С–Н). Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гц): 1.34 (3H, д, ³*J* = 5.2, CHC<u>H</u>₃); CH₃ 5.11 (1H, дт, ²*J* = 16.8, ⁵*J* = 1.8, CCH₂O); 5.24-5.29 (2H, м, CCH₂O и C<u>H</u>CH₃); 5.33 (1H, дт, ²*J* = 16.8, ⁵*J* = 1.4, NCH₂O); 5.51 (1H, дт, ²*J* = 14.8, ⁵*J* = 1.6, NCH₂O); 7.88 (1H, д, ³*J* = 1.2, CH-4-триазол); 8.53 (1H, д, ³*J* = 1.2, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 18.6 (CH₃); 62.8 (C-7); 75.3 (C-4); 99.9 (C-2); 121.9 (C-5триазол); 133.9 (C-4-триазол); 152.1 (C-6). Масс-спектр, *m/z* (*I*_{отн},%): 183 [M+H]⁺ (100). Найдено, %: C 46.35; H 5.62; N 30.41. C₇H₁₀N₄O₂. Вычислено, %: C 46.15; H 5.53; N 30.75.

6-(1H-1,2,3-Триазол-1-ил)-2-фенил-4,7-дигидро-1,3,5-диоксазепин (**36с**). Выход 109 мг (89%). Т. пл. 97-100°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1012, 1088 (С–О); 1695 (С=N); 2875, 2902, 2925, 2974 (С–Н); 3131, 3148 (=С– Н). Спектр ЯМР ¹Н, DMSO-d₆, δ, м.д. (*J*, Гц): 5.29 (2H, уш.с, ССН₂О); 5.46 (2H, дт, ²*J* = 4.0, ⁵*J* = 1.6, NCH₂O); 6.14 (1H, с, С<u>Н</u>Рh); 7.35-7.52 (5H, м, Ph); 7.91 (1H, д, ³*J* = 1.2, CH-4-триазол); 8.57 (1H, д, ³*J* = 1.2, CH-5-триазол). Спектр ЯМР ¹³C, DMSO-d₆, δ, м.д.: 63.2 (C-7); 75.8 (C-4); 100.9 (C-2); 121.9 (С-5-триазол); 126.0 (2C-2,6Ph); 128.2 (2C-3,5Ph); 128.7 (C-4Ph); 133.9 (С-4-триазол); 137.0 (C-1Ph); 152.0 (C-6). Масс-спектр, *m/z* (*I*_{отн},%): 245 [M+H]⁺ (100). Найдено, %: С 58.94; H 4.88; N 23.05. С₁₂H₁₂N₄O₂. Вычислено, %: С 59.01; H 4.95; N 22.94.

2,2-Диметил-6-(1H-1,2,3-триазол-1-ил)-4,7-дигидро-1,3,5-диоксазепин (**36e**). Выход 60 мг (61%). Т. пл. 86-87°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1009, 1086 (С–О); 1698 (С=N); 2878, 2926, 2944, 2993 (С–Н); 3134, 3159 (=С–Н). Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гц): 1.44 (6H, c, H₃C CH₃ 2CH₃); 5.20 (2H, т, ⁵*J* = 1.8, CCH₂O); 5.37 (2H, т, ⁵*J* = 1.8, NCH₂O); 7.87 (1H, уш.с, CH-4-триазол); 8.52 (1H, уш.с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 23.3 (2CH₃); 60.5 (С-7); 73.1 (С-4); 102.4 (С-2); 121.8 (С-5-триазол); 133.8 (С-4триазол); 151.7 (С-6). Масс-спектр, *m/z* (*I*_{отн},%): 197 [M+H]⁺ (100). Найдено, %: С 48.95; H 6.20; N 28.50. С₈H₁₂N₄O₂. Вычислено, %: С 48.97; H 6.16; N 28.56.

2-Метил-6-(1Н-1,2,3-триазол-1-ил)-2-этил-4,7-дигидро-1,3,5-

диоксазепин (**36f**). Выход 85 мг (81%). Т. пл. 65-68°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1003, 1087 (С–О); 1700 (С=N); 2856, 2883, 2942, 2974 (С–Н); 3134, 3164 (=С–Н). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 0.88 H_3 С (3H, т, ${}^{3}J$ = 7.6, CH₂C<u>H</u>₃); 1.36 (3H, с, CH₃); 1.77 (2H, к, ${}^{3}J$ = 7.6, C<u>H</u>₂CH₃); 5.19 (2H, дт, ${}^{2}J$ = 4.0, ${}^{5}J$ = 1.9, CCH₂O); 5.36 (2H, дт, ${}^{2}J$ = 4.0, ${}^{5}J$ = 1.9, NCH₂O); 7.86 (1H, д, ${}^{3}J$ = 1.2, CH-4-триазол); 8.51 (1H, д, ${}^{3}J$ = 1.2, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 8.1 (CH₂<u>C</u>H₃); 19.9 (CH₃); 28.1 (C<u>C</u>H₂CH₃); 60.4 (C-7); 73.0 (C-4); 104.5 (C-2); 121.8 (C-5-триазол); 133.8 (C-4-триазол); 151.8 (C-6). Масс-спектр, *m/z* ($I_{\text{отн}}$ %): 211 [M+H]⁺ (100). Найдено, %: C 51.35; H 6.75; N 26.61. C₉H₁₄N₄O₂. Вычислено, %: C 51.42; H 6.71; N 26.65. 2,2-Диметил-6-[4-(триметилсилил)-1H-1,2,3-триазол-1-ил]-4,7дигидро-1,3,5-диоксазепин (**36g**). Выход 96 мг (72%). Т. пл. 91-94°С (EtOH). ИК спектр, v, см⁻¹: 846 (Si–C); 1022, 1094 (С–О); 1699 (С=N); 2900, 2927, 2960, 2993 (С–Н); 3153 (=С–Н). Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гц): 0.27 (9H, с, 3CH₃Si); 1.43 (6H, с, 2CH₃); 5.18 (2H, уш.с, H₃C – CH₃ ССН₂O); 5.37 (2H, уш.с, NCH₂O); 8.52 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: -1.48 (SiCH₃); 23.3 (2CH₃); 60.9 (С-7); 73.2 (С-4); 102.4 (С-2); 127.2 (С-5-триазол); 145.7 (С-4-триазол); 151.7 (С-6). Масс-спектр, *m*/*z* (*I*_{отн},%): 269 [M+H]⁺ (100). Найдено, %: С 49.34; Н 7.70; N 20.46. С₁₁H₂₀N₄O₂Si. Вычислено, %: С 49.23; Н 7.51; N 20.88.

2,2-Диметил-6-(4-фенил-1H-1,2,3-триазол-1-ил)-4,7-дигидро-1,3,5диоксазепин (**36h**). Выход 50 мг (37%), (86 мг (63%) при 50°С). Т. пл. 103-105°С (ЕtOH). ИК спектр, v, см⁻¹: 1017, 1084 (С–О); 1701 (С=N); 2888, 2928, 2972, 2988 (С–Н); 3164 (=С–Н). Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гп): 1.46 (6H, с, 2CH₃); 5.23 (2H, т, ${}^{5}J$ = 1.6, CCH₂O); 5.42 (2H, τ , ${}^{5}J$ = 1.6, NCH₂O); 7.36 (1H, τ , ${}^{3}J$ = 7.4, 4-Ph); 7.45 (2H, τ , ${}^{3}J$ = 7.6, 3,5-Ph); 7.96 (2H, д, ${}^{3}J$ = 7.2, 2,6-Ph); 9.00 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 23.3 (2CH₃); 60.5 (С-7); 73.3 (С-4); 102.5 (С-2); 117.8 (С-5триазол); 125.5 (2C-2,6Ph); 128.3 (С-4Ph); 128.9 (2C-3,5Ph); 129.5 (С-1Ph); 146.6 (С-4-триазол); 151.7 (С-6). Масс-спектр, *m/z* ($I_{отн}$,%): 273 [M+H]⁺ (100), 245 [M+H-N₂]⁺ (18). Найдено, %: С 61.52; Н 5.94; N 20.32. С₁₄Н₁₆N₄O₂. Вычислено, %: С 61.75; H 5.92; N 20.58.

9-(4-Фенил-1H-1,2,3-триазол-1-ил)-6,11-диокса-8-азаспиро[4.6]ундец-8ен (**36j**). Выход 78 мг (52%), (100 мг 67% при 50°С). Т. пл. 135-137°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1008 (С–О); 1691 (С=N); 2851, 2875, 2928, 2957 (С–Н); 3142 (=С–Н). Спектр ЯМР ¹Н, DMSO-d₆, δ, м.д. (*J*, Гц): 1.64-1.68 (4H, м, 2CH₂); 1.89 (4H, т, ³*J* = 7.0, 2CH₂); 5.19 (2H, т, ⁵*J* = 1.6, CCH₂O); 5.40 (2H, т, ⁵*J* = 1.6, NCH₂O); 7.36 (1H, т, ³*J* = 7.4, 4-Ph); 7.44 (2H, т, ${}^{3}J$ = 7.6, 3,5-Ph); 7.95 (2H, д, ${}^{3}J$ = 7.2, 2,6-Ph); 9.00 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 23.3 (2С-2,3); 34.8 (2С-1,4); 62.2 (С-10); 75.2 (С-7); 114.7 (С-5); 118.1 (С-5-триазол); 125.6 (С-2,6Ph); 128.5 (С-4Ph); 128.9 (С-3,5Ph); 129.6 (С-1Ph); 146.8 (С-4-триазол); 152.1 (С-9). Спектр ЯМР ¹⁵N, δ , м.д.: 264 (N-1триазол); 288 (N-8); 353 (N-3-триазол); 359 (N-2-триазол). Масс-спектр, *m/z* ($I_{\text{отн}}$ %): 299 [M+H]⁺ (100), 271 [M+H-N₂]⁺ (16). Найдено, %: С 64.39; H 6.21; N 18.64. С₁₆H₁₈N₄O₂. Вычислено, %: С 64.41; H 6.08; N 18.78.

10-(4-Фенил-1H-1,2,3-триазол-1-ил)-7,12-диокса-9-азаспиро[5.6]додец-9-ен (**36k**). Выход 101 мг (65%). Т. пл. 148-151°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1015 (С–О); 1697 (С=N); 2850, 2947 (С–Н); 3146 (=С–Н). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.38-1.53 (6H, м, 3CH₂); 1.77 (4H, т, ³*J* = 5.8, 2CH₂); 5.23 (2H, уш.с, CCH₂O); 5.42 (2H, уш.с, NCH₂O); 7.36 (1H, т, ³*J* = 7.4, 4Ph); 7.45 (2H, т, ³*J* = 7.6, CH-3,5Ph); 7.95 (2H, д, ³*J* = 7.2, CH-2,6Ph); 8.98 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 22.4 (2C-2,4); 24.6 (С-3); 31.7 (2C-1,5); 59.8 (С-11); 72.6 (С-8); 102.4 (С-6); 117.8 (С-5триазол); 125.5 (С-2,6Ph); 128.3 (С-4Ph); 128.7 (С-3,5Ph); 129.5 (С-1Ph); 146.6 (С-4триазол); 151.9 (С-10). Масс-спектр, *m*/*z* (*I*_{0тн},%): 313 [M+H]⁺ (100), 285 [M+H-N₂]⁺ (20). Найдено, %: С 65.51; H 6.32; N 17.87. С₁₇H₂₀N₄O₂. Вычислено, %: С 65.37; H 6.45; N 17.94.

6-(1*H*-имидазол-1-ил)-2,2-диметил-4,7-дигидро-1,3,5-диоксазепин (**39а**). Выход 63 мг (65%). Т. пл. 104-106°С (ЕtOH). ИК спектр, v, см⁻¹: 1010 (С–О); 1700 (С=N); 2848, 2950 (С–Н); 3150 (=С–Н). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.43 (6H, с, 2СН₃); 4.96 (2H, т, ⁵*J* = 1.6, ^{H₃C} ^{CH₃} CCH₂O); 5.28 (2H, т, ⁵*J* = 1.6, NCH₂O); 6.99 (1H, с, CH-4-имидазол); 7.58 (1H, т, *J* = 1.3, CH-5-имидазол); 8.14 (1H, с, CH-2-имидазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 23.3 (2CH₃); 61.1 (С-7); 73.0 (С-4); 102.2 (С-2); 116.3 (С-5-имидазол); 129.3 (С-4имидазол); 135.3 (С-2-имидазол); 151.1 (С-6). Масс-спектр, *m/z* (*I*_{отн},%): 196 [M+H]⁺ (100). Найдено, %: С 55.30; Н 6.75; N 21.57. С₉Н₁₃N₃O₂. Вычислено, %: С 55.37; Н 6.71; N 21.52.

6-(*1Н-бензо[d]имидазол-1-ил*)-2,2-диметил-4,7-дигидро-1,3,5диоусазепин (**39b**). Выход 54 мг (44%). Т. пл. 123-124°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1013 (С–О); 1696 (С=N); 2922, 2963, 2988 (С–Н); 3109 (=С–Н). Спектр ЯМР ¹Н, DMSO-d₆, δ, м.д. (*J*, Гц): 1.47 (6H, с, 2CH₃); 5.13 _{H₃C} – _{CH₃} (2H, т, ⁵*J* = 1.6, ССН₂О); 5.43 (2H, т, ⁵*J* = 1.6, NCH₂O); 7.25-7.35 (2H, м, Ar); 7.67-7.73 (1H, м, Ar); 8.20-8.27 (1H, м, Ar); 8.63 (1H, с, Ar). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 23.4 (2CH₃); 61.7 (С-7); 73.2 (С-4); 102.1 (С-2); 115.4 (Ar); 119.4 (Ar); 123.2 (Ar); 123.8 (Ar); 131.7 (Ar); 141.7 (Ar); 143.8 (Ar); 152.4 (С-6). Масс-спектр, *m/z* (*I*_{отн},%): 246 [М+Н]⁺ (100). Найдено, %: С 63.63; Н 6.15; N 17.17. С₁₃Н₁₅N₃O₂. Вычислено, %: С 63.66; Н 6.16; N 17.13.

6-(*1H*-Бензо[*d*][*1*,2,3]*триазол-1-ил*)-2,2-диметил-4,7-дигидро-1,3,5 *диоксазепин* (**39е**). Выход 163 мг (33%) (Загрузка 2 ммоль). Т. пл. 80-82°С (ЕtOH). ИК спектр, *v*, см⁻¹: 1013, 1043 (С–О); 1696 (С=N); 2922, 2963, 2988 (С–Н); 3109 (=С–Н). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.49 (6H, c, CH₃); 5.37 (2H, т, ⁵*J* = 1.7, CCH₂O); 5.52 (2H, т, ⁵*J* = 1.7, NCH₂O); 7.54 (1H, т, *J* = 7.7, Ar); 7.68 (1H, т, *J* = 7.7, Ar); 8.16 (1H, д, *J* = 8.3, Ar); 8.32 (1H, д, *J* = 8.3, Ar). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 23.4 (2CH₃); 61.1 (С-7); 73.4 (С-4); 102.3 (С-2); 114.6 (Ar); 119.4 (Ar); 125.4 (Ar); 129.3 (Ar); 130.7 (Ar); 145.4 (Ar), 153.5 (С-6).

Масс-спектр, *m/z* (*I*_{отн},%): 247 [M+H]⁺ (100). Найдено, %: С 58.57; Н 5.75; N 22.70. С₁₂Н₁₄N₄O₂. Вычислено, %: С 58.53; Н 5.73; N 22.75.

2,2-Диметил-4-(5-фенил-2H-тетразол-2-ил)-2,5-дигидрооксазол (401). Выход 50 мг (40%) (Загрузка исходного диоксана 0.44 ммоль). Светложелтое масло. Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 2.15(6H, с, 2CH₃); 4.24 (2H, с, CH₂); 7.42-7.50 (3H, м, Ph); 8.12-8.23 (2H, м, Ph). Спектр ЯМР ¹³C, DMSO-d₆, δ, м.д.: 25.7(2CH₃); 49.7(CH₂); 94.2(<u>C</u>CH₃); 115.4 (Ph); 127.0 (Ph); 128.9 (Ph); 130.6 (Ph); 148.9 (С-тетразол); 165.3 (N<u>C</u>CH₂). Массспектр, *m/z* (*I*_{отн},%): 244 [M+H]⁺ (30); 285 [M+H+41]⁺ (20); 216 [M+H-28]⁺ (20). Найдено, %: С 59.15; Н 5.45; N 28.85. С₁₂H₁₃N₅O. Вычислено, %: С 59.25; Н 5.39; N 28.79.

4-(1H-Бензо[d][1,2,3]триазол-1-ил)-2,2-диметил-2,5-дигидрооксазол (40с). Выход 30 мг (7%) (Загрузка 2 ммоль). Соединение образуется в качестве минорного при дезоксигенировании 8d и 8e. Светло-желтое масло. Спектр ЯМР ¹H, CDCl₃, δ , м.д. (*J*, Гц): 2.12 (6H, с, 2CH₃); 3.95 (2H, с, CH₂); 7.38-7.44 (1H, м, Ar); 7.50-7.56 (1H, м, Ar); 7.83 (1H, д, *J* = 8.4, Ar); 8.10 (1H, д, *J* = 8.4, Ar). Спектр ЯМР ¹³С, CDCl₃, δ , м.д.: 26.0 (2CH₃); 49.0 (CH₂); 93.1 (<u>C</u>CH₃); 111.9 (Ar); 120.4 (Ar); 124.5 (Ar); 128.1 (Ar); 131.5 (Ar); 147.1 (Ar); 160.0 (N<u>C</u>CH₂). Масс-спектр, *m/z* (*I*_{отн},%): 217 [M+H]⁺ (100). Найдено, %: C 61.15; H 5.55; N 25.95. C₁₁H₁₂N₄O. Вычислено, %: C 61.10; H 5.59; N 25.91.

4-(2H-Бензо[d][1,2,3]триазол-2-ил)-2,2-диметил-2,5-дигидрооксазол (40d). Выход 49 мг (10%) (Загрузка 2 ммоль). Соединение образуется в качестве минорного при дезоксигенировании 8d и 8e. Светло-желтое масло. Спектр ЯМР ¹H, CDCl₃, δ, м.д. (*J*, Гц): 2.18 (6H, с, CH₃); 4.17 (2H, с, CH₂); 7.38-7.44 (2H, м, Ar); 7.86-7.92 (2H, м, Ar). Спектр ЯМР ¹³С, CDCl₃, δ, м.д.: 26.2 (2CH₃); 49.6 (CH₂); 95.3 (<u>C</u>CH₃); 118.5 (Ar); 127.1 (Ar); 144.2 (Ar); 159.9 (N<u>C</u>CH₂). Macc-спектр, *m/z* (*I*_{отн},%): 217 [M+H]⁺ (100). Найдено, %: С 61.17; H 5.65; N 25.88. C₁₁H₁₂N₄O. Вычислено, %: С 61.10; H 5.59; N 25.91.

Соединения **47-49** синтезированы согласно ранее описанной процедуре [94]. Выходы составили 50 - 70%. Спектральные данные совпадают с описанными.

Общая методика получения 1-(1-трет-бутил-1H-имидазол-4-ил)-1H-1,2,3-триазолов **32а-k**, **m-n**, **33п**. 4,5-Дихлоро-3,6-диоксо-циклогекса-1,4-диен-1,2-дикарбонитрил (DDQ) (226 мг, 1 ммоль) добавляют порциями к растовру 1-(1-трет-бутил-2,5дигидро-1H-имидазол-4-ил)-1H-1,2,3-триазола **29**, **30** (0.5 ммоль) в сухом хлористом метилене. Реакционную массу выдерживают при перемешивании и комнатной температуре в течение 1 часа. По окончании взаимодействия (контроль TCX) растворитель удаляют при пониженном давлении. Остаток чистят методом колоночной хроматографии на силикагеле, используя в качестве подвижной фазы смесь EtOAc-*н*-гексан (30:70). При необходимости продукт кристаллизуют из этилового спирта.

I-(1-трет-Бутил-1H-имидазол-4-ил)-1H-1,2,3-триазол (**32а**). Выход 87 мг (91%). Т. пл. 80-81°С. ИК спектр, *v*, см⁻¹: 1592 (С=N); 3133 (С-НАг). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.55 (9H, с, СН₃); 7.79 (1H, д, ⁴*J*) = 1.5, CH-5-имидазол); 7.82 (1H, д, ³*J* = 1.0, CH-4-триазол); 7.84 (1H, д, ⁴*J*) ^{H₃C+CH₃} = 1.5, CH-2-имидазол); 8.39 (1H, д, ³*J* = 1.0, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 29.6 (CH₃); 55.7 (С-CH₃); 107.5 (С-5-имидазол); 122.5 (С-5триазол); 133.0 (С-2-имидазол); 133.1 (С-4-триазол); 136.5 (С-4-имидазол). Массспектр, *т/z* (*I*_{отн},%): 192 [M+H]⁺ (100). Найдено, %: С 56.60; H 6.88; N 36.52. С₉H₁₃N₅. Вычислено, %: С 56.53; H 6.85; N 36.62.

1-(1-трет-Бутил-1Н-имидазол-4-ил)-4-триметилсилил-1Н-1,2,3триазол (**32b**). Выход 100 мг (76%). Т. пл. 132-133°С. ИК спектр, *v*, см⁻¹: 1583 (C=N); 3101 (C-HAr). Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гц): 0.31 (9H, с, Si-CH₃); 1.58 (9H, с, C-CH₃); 7.79 (1H, д, ⁴*J* H_3 с $+_{CH_3}$ = 1.6, CH-5-имидазол); 7.85 (1H, д, ⁴*J* = 1.6, CH-2-имидазол); 8.40 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: –1.3 (CH₃-Si); 29.6 (CH₃-C); 55.7 (С-СН₃); 107.6 (С-5- имидазол); 128.1 (С-5-триазол); 133.1 (С-2-имидазол); 136.3 (С-4-имидазол); 144.7 (С-4 триазол). Масс-спектр, *m/z* (*I*_{отн},%): 236 (10) [М-N₂]⁺, 264 (100) [М+Н]⁺. Найдено, %: С 54.80, Н 8.08, N 26.52. С₁₂Н₂₁N₅Si. Вычислено, %: С 54.72; Н 8.04; N 26.59.

I-(1-трет-Бутил-1Н-имидазол-4-ил)-4-циклопропил-1Н-1,2,3триазол (**32с**). Выход 106 мг (92%). Т. пл. 93-95°С. ИК спектр, *v*, см⁻¹: 1599 (C=N); 3134 (C-HAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 0.74-0.82 (2H, м, CH₂); 0.88-0.97 (2H, м, CH₂); 1.55 (9H, с, CH₃); $H_3C - CH_3$ 1.93-2.10 (1H, м, CH); 7.81 (1H, д, ⁴*J* = 1.6, CH-5-имидазол); 7.86 (1H, д, ⁴*J* = 1.6, CH-2-имидазол); 8.16 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 6.5 (CH₂); 7.8 (CH-CH₂); 29.8 (CH₃); 55.9 (C-CH₃); 107.5 (C-5-имидазол); 118.6 (C-5-триазол); 133.2 (C-2-имидазол); 136.7 (C-4-имидазол); 149.2 (C-4-триазол). Массспектр, *m/z* (*I*_{отн},%): 204 (50) [M-N₂]⁺, 232 (100) [M+H]⁺. HRMS (ESI): вычислено для С₁₂H₁₈N₅ 232.1562; найдено 232.1560.

1-(1-трет-Бутил-1Н-имидазол-4-ил)-4-фенил-1Н-1,2,3-триазол

(**32d**). Выход 127 мг (95%). Т. пл. 99-101°С. ИК спектр, *ν*, см⁻¹: 1598 (C=N); 3118 (C-HAr). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.60 (9H, с, CH₃); 7.34-7.38 (1H, т, ³*J* = 7.4, Ph); 7.45-7.49 (2H, т, ³*J* = 7.6, Ph); 7.88 (1H, д, ⁴*J* = 1.6, CH-5-имидазол); 7.93-8.00 (2H,

м, Ph); 7.91 (1H, д, ⁴*J* = 1.6, CH-2-имидазол); 8.90 (1H, с, CH-5-триазол). Спектр ЯМР ¹³C, DMSO-d₆, δ, м.д.: 29.6 (CH₃); 55.8 (C-CH₃); 107.6 (C-5-имидазол); 118.9 (C-5триазол); 125.2 (Ph); 127.8 (Ph); 128.6 (Ph); 130.2 (Ph); 133.2 (C-2-имидазол); 136.3 (C-4-имидазол); 146.1 (C-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 268 [M+H]⁺ (100). Найдено, %: C 67.45; H 6.48; N 26.07. C₁₅H₁₇N₅. Вычислено, %: C 67.39; H 6.41; N 26.20. *триазол* (**32е**). Выход 121 мг (85%). Т. пл. 138-140°С. ИК спектр, *v*, см⁻¹: 1602 (C=N); 3116 (C-HAr). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.60 (9H, с, CH₃); 7.32-7.40 (2H, м, Ar); 7.41-7.49 (1H, м, Ar); 7.91 (1H, д, ⁴*J* = 1.6, CH-5-имидазол); 7.93 (1H, д, ⁴*J* = 1.6,

СН-2-имидазол); 8.17 (1H, т, ${}^{3}J$ = 7.5, Ar); 8.61 (1H, д, ${}^{5}J_{H,F}$ = 3.5, СН-5-триазол). Спектр ЯМР 13 С, DMSO-d₆, δ , м.д.: 29.6 (СН₃); 55.9 (С-СН₃); 107.8 (С-5-имидазол); 115.7 (д, ${}^{2}J_{C,F}$ = 21.3); 117.9 (д, ${}^{2}J_{C,F}$ = 10.55); 120.8 (д, ${}^{2}J_{C,F}$ = 10.55); 124.7 (д, ${}^{5}J_{C,F}$ = 4.0); 127.5 (д, ${}^{5}J_{C,F}$ = 3.0); 129.7 (д, ${}^{3}J_{C,F}$ = 8.8); 133.3 (С-2-имидазол); 136.1 (С-4-имидазол); 139.7 (С-4-триазол); 158.4 (д, ${}^{1}J_{C,F}$ = 247.8). Масс-спектр, *m*/*z* ($I_{\text{отн}}$,%): 258 [M-N₂]⁺ (10), 286 [M+H]⁺ (100). Найдено, %: С 63.17; Н 5.60; N 24.56. С₁₅H₁₆FN₅. Вычислено, %: С 63.14; H 5.65; N 24.55.

1-(1-трет-Бутил-1H-имидазол-4-ил)-4-(2-хлорфенил)-1H-1,2,3триазол (**32f**). Выход 138 мг (92%). Т. пл. 146-148°С. ИК спектр, *v*, см⁻¹: 1596 (C=N); 3126 (C-HAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.60 (9H, с, CH₃); 7.38-7.53 (2H, м, Ar); 7.59 (1H, д, ³*J* = $H_{3}C - CH_{3}$ 7.9, Ar); 7.92 (1H, д, ⁴*J* = 1.6, CH-5-имидазол); 7.93 (1H, д, ⁴*J* = 1.6,

СН-2-имидазол); 8.10 (1H, дд, ${}^{3}J = 7.7$, ${}^{3}J = 1.5$, Ar); 8.80 (1H, с, СН-5-триазол). Спектр ЯМР 13 С, DMSO-d₆, δ , м.д.: 29.6 (CH₃); 55.9 (C-CH₃); 107.9 (С-5-имидазол); 121.4 (С-5-триазол); 127.3 (Ar); 128.7 (Ar); 129.5 (Ar); 129.6 (Ar); 130.0 (Ar); 130.5 (Ar); 133.3 (С-2-имидазол); 136.1 (С-4-имидазол); 142.6 (С-4-триазол). Масс-спектр, *m/z* ($I_{\text{отн}}$,%): 274 [M-N₂]⁺ (10), 302 [M+H]⁺ (100), 304 [M+2] (30). Найдено, %: С 59.73; H 5.40; N 23.25. С₁₅H₁₆ClN₅. Вычислено, %: С 59.70; H 5.34; N 23.21.

1-(1-трет-Бутил-1H-имидазол-4-ил)-4-(3-хлорфенил)-1H-1,2,3триазол (**32g**). Выход 140 мг (93%). Т. пл. 163-165°С. ИК спектр, *v*, см⁻¹: 1604 (C=N); 3122 (C-HAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.60 (9H, с, CH₃); 7.40 (1H, дд, ³*J* = 7.1, ³*J* = 1.9, Ar); 7.49 (1H, т, ³*J* = 7.9, Ar); 7.88 (1H, д, ⁴*J* = 1.7, CH-5-

CH₂

ĊH₃
имидазол); 7.91 (1H, д, ${}^{4}J$ = 1.7, CH-2-имидазол); 7.94 (1H, д, ${}^{3}J$ = 7.8, Ar); 8.02 (1H, т, ${}^{3}J$ = 1.8,Ar); 9.02 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 29.6 (CH₃); 55.9 (C-CH₃); 107.7 (C-5-имидазол); 119.7 (C-5-триазол); 123.7 (Ar); 124.8 (Ar); 127.6 (Ar); 130.6 (Ar); 132.3 (Ar); 133.3 (C-2-имидазол); 133.5 (Ar); 136.2 (C-4-имидазол); 144.8 (C-4-триазол). Масс-спектр, m/z ($I_{\text{отн}}$ %): 274 [M-N₂]⁺ (10), 302 [M+H]⁺ (100), 304 [M+2] (30). Найдено, %: C 59.73, H 5.40, N 23.25. C₁₅H₁₆ClN₅. Вычислено, %: C 59.70; H 5.34; N 23.21.

CI

1-(1-трет-Бутил-1H-имидазол-4-ил)-4-(2,4-дихлорфенил)-1H-1,2,3-триазол (**32h**). Выход 160 мг (95%). Т. пл. 153-154°С. ИК спектр, *v*, см⁻¹: 1602 (C=N); 3116 (C-HAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.60 (9H, с, CH₃); 7.56 (1H, дд, ³*J* = 8.5, ³*J* = 2.2, Ar); 7.75 (1H, д, ³*J* = 2.1, Ar); 7.92 (1H, д, ⁴*J* = 1.7, CH-5-

имидазол); 7.94 (1H, д, ${}^{4}J$ = 1.7, CH-2-имидазол); 8.12 (1H, д, ${}^{3}J$ = 8.5, Ar); 8.84 (1H, c, CH-5-триазол). Спектр ЯМР 13 C, DMSO-d₆, δ , м.д.: 29.6 (CH₃); 55.9 (C-CH₃); 108.0 (C-5-имидазол); 121.5 (C-5-триазол); 127.6 (Ar); 127.7 (Ar); 129.5 (Ar); 130.7 (Ar); 131.3 (Ar); 133.2 (C-2-имидазол); 133.4 (Ar); 136.0 (C-4-имидазол); 141.7 (C-4-триазол). Масс-спектр, *m*/*z* ($I_{\text{отн}}$,%): 307 [M-N₂]⁺ (36), 336 [M]⁺ (100), 338 [M+2] (71), 340 [M+4] (31). Найдено, %: C 53.55; H 4.40; N 20.80. C₁₅H₁₅Cl₂N₅. Вычислено, %: C 53.58; H 4.50; N 20.83.

I-(1-трет-Бутил-1H-имидазол-4-ил)-4-(4-трифторметилфенил)-1H-1,2,3-триазол (**32i**). Выход 100 мг (60%). Т. пл. 134-136°С. ИК спектр, *v*, см⁻¹: 1634 (С=N); 3196 (С-НАг). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.60 (9H, с, СН₃); 7.82 (2H, д, ³*J* = 8.2, Ar); 7.91 (1H, д, ⁴*J* = 1.7, CH-5имидазол); 7.93 (1H, д, ⁴*J* = 1.7, CH-2-имидазол); 8.20 (2H, д, ³*J* = 8.2, Ar); 9.10 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 29.6 (CH₃); 55.9 (С-CH₃); 107.8 (С-5-имидазол); 120.2 (С-5-триазол); 124.2 (к, ¹*J*_{C-F} = 272.0); 125.6 (к, ³*J*_{C-F} = 4.0); 125.7 (Аг); 133.3 (С-2-имидазол); 134.2 (Аг); 136.1 (С-4-имидазол); 144.8 (С-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 308 [M-N₂]⁺ (14), 336 [M+H]⁺ (100). HRMS (ESI): вычислено для C₁₆H₁₇F₃N₅ [M+H]⁺ 336.1435; найдено 336.1432.

l-(1-трет-Бутил-1Н-имидазол-4-ил)-4-(3-трифторметилфенил)-1H-1,2,3-триазол (**32j**). Выход 124 мг (74%). Т. пл. 152-154°С. ИК спектр, *v*, см⁻¹: 1596 (С=N); 3144 (С-НАг). Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гц): 1.60 (9H, с, СН₃); 7.69-7.75 (2H, м, Ar); 7.90 (1H, д, ⁴*J* = 1.7, CH-5-имидазол); 7.93 (1H, д, ⁴*J*) ^{H₃C-CH₃} = 1.7, CH-2-имидазол); 8.23-8.34 (2H, м, Ar); 9.15 (1H, с, CH-5триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 29.6 (CH₃); 55.9 (С-CH₃); 107.7 (С-5имидазол); 119.9 (С-5-триазол); 121.5 (к, ³*J*_{C,F} = 3.8); 123.9 (к, ¹*J*_{C,F} = 272); 124.2 (к, ³*J*_{C,F} = 3.8); 129.0 (к, ⁵*J*_{C,F} = 1.2); 129.7 (к, ²*J*_{C,F} = 32); 131.3 (Ar); 133.3 (С-2-имидазол); 136.2 (С-4-имидазол); 144.7 (С-4-триазол). Масс-спектр, *m*/*z* (*I*_{отн},%): 308 [M-N₂]⁺ (20), 336 [M+H]⁺ (100). HRMS (ESI): вычислено для C₁₆H₁₇F₃N₅ [M+H]⁺ 336.1435; найдено 336.1431.

1-(1-трет-Бутил-1H-имидазол-4-ил)-4-(3-метокси-фенил)-1H-1,2,3-триазол (**32k**). Выход 116 мг (78%). Т. пл. 115-117°С. ИК спектр, *v*, см⁻¹: 1596 (C=N); 3115 (C-HAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.60 (9H, с, C-CH₃); 3.84 (3H, с, O-CH₃); 6.93 (1H, дд, ³*J* = 8.2, ³*J* = 1.8, Ar); 7.37 (1H, т, ³*J* = 7.9, Ar); 7.54

(2H, т, ${}^{3}J = 5.7$, Ar); 7.87 (1H, д, ${}^{4}J = 1.6$, CH-5-имидазол); 7.91 (1H, д, ${}^{4}J = 1.6$, CH-2-имидазол); 8.94 (1H, с, CH-5-триазол). Спектр ЯМР 13 С, DMSO-d₆, δ , м.д.: 29.6 (CH₃); 55.0 (CH₃-O); 55.8 (C-CH₃); 107.6 (C-5-имидазол); 110.5 (Ar); 113.8 (Ar); 117.5 (Ar); 119.2 (C-5-триазол); 129.7 (Ar); 131.5 (Ar); 133.2 (C-2-имидазол); 136.3 (C-4-имидазол); 146.0 (C-4-триазол); 159.6 (Ar). Масс-спектр, *m/z* ($I_{\text{отн}}$,%): 270 [M-N₂]⁺ (30), 298 [M+H]⁺ (100). HRMS (ESI): вычислено для C₁₆H₂₀N₅O [M+H]⁺ 298.1667; найдено 298.1669.

1-Бензил-4-(1-(1-(трет-бутил)-1H-имидазол-4-ил)-1H-1,2,3-триазол-4-ил)пиперидин (**32m**). Выход 138 мг (76%). Т. пл. 130-132°С. ИК спектр, *v*, см⁻¹: 1601 (С=N); 3125 (С-HAr). Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гц): 1.21-1.27 (2Н, м, СН-пиперидин); 1.55 (9Н, с, С-СН₃); 1.98-2.11 (2H, м, СН-пиперидин); 2.20 (2H, д, *J* = 14.3, СН-пиперидин); 3.06 (3H, дд, *J* = 21.6, 9.5, СНпиперидин); 3.41 (2H, д, *J* = 13.3, CH₂Ph); 7.44 (3H, с, Ph); 7.61 (1H, д, ⁴*J* = 2.1, CH-5имидазол); 7.63 (1H, д, ⁴*J* = 2.1, CH-2-имидазол); 7.81 (2H, д, *J* = 25.3, Ph); 8.20 (1H, с, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 27.0 (С<u>С</u>H₂CH₂); 28.1 (С<u>С</u>H₂CH₂); 29.6 (CH₃); 30.3 (С<u>С</u>H₂CH₂); 51.0 (С<u>С</u>H₂CH₂); 55.8 (С-СН₃); 59.1 (С<u>С</u>H₂CH₂); 107.5 (С-5-имидазол); 119.0 (С-5-триазол); 128.5 (Ph); 128.6 (Ph); 129.2 (Ph); 131.2 (Ph); 133.1 (С-2-имидазол); 136.5 (С-4-имидазол); 150.7 (С-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 365 [М+Н]⁺ (100). Найдено, %: С 69.27; Н 7.70; N 23.15. С₂₁H₂₈N₆. Вычислено, %: С

69.20; H 7.74; N 23.06.

Метил 1-(1-(трет-бутил)-1H-имидазол-4-ил)-1H-1,2,3-триазол-4карбоксилат (**32n**). Выход 300 мг (30%) (загрузка исходного дигидроимидазола 3.9 ммоль). Т. пл. 152-154°С. Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (J, Гц): 1.58 (9H, c, C-CH₃); 3.87 (3H, c, O-CH₃); 7.91 (1H, д, ${}^{4}J$ = 1.4, CH-5-имидазол); 7.94 (1H, д, ${}^{4}J$ = 1.6, CH-2имидазол); 8.92 (1H, c, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 29.6 (CH₃); 51.6 (CH₃-O); 56.0 (C-CH₃); 108.5 (C-5-имидазол); 126.0 (C-5-триазол); 133.6 (C-2имидазол); 135.5 (C-4-имидазол); 138.5 (C-4-триазол); 160.3 (C=O). HRMS (ESI): вычислено для C₁₁H₁₆N₅O₂[M+H]⁺250.1225; найдено 250.1231.

Метил 2-(1-(трет-бутил)-1*H*-имидазол-4-ил)-2*H*-1,2,3-триазол-4карбоксилат (**33n**). Выход 200 мг (21%) (загрузка исходного дигидроимидазола 3.9 ммоль). Т. пл. 170-173°С. Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.58 (9H, с, С-CH₃); 3.90 (3H, с, О-CH₃); 7.86

5-триазол). HRMS (ESI): вычислено для C₁₁H₁₆N₅O₂ [M+H]⁺ 250.1225; найдено 250.1231.

Общая методика 2-(1-трет-бутил-1Н-имидазол-4-ил)-2Н-1,2,3получения 1-(1-*трет*-бутил-3-нитроазетидин-3-ил)-1*H*-1,2,3триазолов 33a,d. Смесь триазола 25а, d (1 ммоль) и триэтилфосфита (332 мг, 2 ммоль) в 3 мл бензола перемешивают при кипении в течение 60 часов. По завершении реакции (ГХ/МС контроль) растворитель отгоняют при пониженном давлении. Полученный остаток растворяют в 3 мл сухого хлористого метилена и DDQ (454 мг, 2 ммоль) добавляют порциями к полученному раствору. Смесь перемешивают в течение 1 часа при комнатной температуре. По завершении реакции растворитель отгоняют Остаток при пониженном давлении. чистят методом препаративной хроматографии с использованием обращенной фазы (RP-HPLC).

2-(1-трет-Бутил-1H-имидазол-4-ил)-2H-1,2,3-триазол (**33a**). Выход 44 мг (23%). Т. пл. 127-130°С. ИК спектр, v, см⁻¹: 1587 (С=N); 3109 (С-НАг). Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гц): 1.57 (9H, с, С-СН₃); 7.68 (1H, д, ⁴*J* = 1.6, CH-5-имидазол); 7.84 (1H, д, ⁴*J* = 1.6, CH-2-имидазол); 7.94 (2H, ^{H₃C - CH₃ с, CH-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 29.6 (CH₃-C); 55.6 (C-CH₃); 107.9 (С-5-имидазол); 132.7 (С-2-имидазол); 134.9 (С-4,5-триазол); 139.6 (С-4-имидазол). Масс-спектр, *m/z* (*I*_{отн},%): 192 [M+H]⁺ (100). Найдено, %: С 56.60, H 6.88, N 36.52. С₉H₁₃N₅. Вычислено, %: С 56.53, H 6.85, N 36.62.}

2-(1-трет-Бутил-1H-имидазол-4-ил)-4-фенил-2H-1,2,3-триазол (**33d**). Выход 113 мг (42%). Т. пл. 208-210°С. ИК спектр, v, см⁻¹: 1571 (C=N); 3081 (C-HAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.59 (9H, с, CH₃); 7.41 (1H, м, Ar); 7.50 (2H, м, Ar); 7.76 (1H, д, ⁴*J* = 1.7, CH-5-имидазол); 7.83 (1H, д, ⁴*J* = 1.7, CH-2-имидазол); 7.93 (2H, м, Ar); 8.42 (1H, с, CH-5триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 29.6 (CH₃); 55.6 (C-CH₃); 108.0 (C-5-имидазол); 125.6 (Ar); 128.4 (Ar); 128.7 (Ar); 129.6 (Ar); 132.1 (C-5-триазол); 132.8 (С-2-имидазол); 139.6 (С-4-триазол); 147.3 (С-4-имидазол). Масс-спектр, *m/z* (*I*_{отн},%): 268 [М+Н]⁺ (100). Найдено, %: С 67.45, Н 6.48, N 26.07. С₁₅Н₁₇N₅. Вычислено, %: С 67.39, Н 6.41, N 26.20.

2,2-Диметил-1,3,5-диоксазепан-6-он (41). К 50% спиртовому раствору 6-(1Н-Бензо[d][1,2,3]триазол-1-ил)-2,2-диметил-4,7-дигидро-1,3,5диоксазепина (**39c**) (123 мг, 0.5 ммоль) присыпают дигидрофосфат калия H₃C' CH3 (68 мг, 0.5 ммоль). Реакционную массу выдерживают в течение 4 часов. За ходом реакции следят методами ТСХ и ЖХ/МС анализа. По окончании взаимодействия, реакционную массу упаривают. Остаток экстрагируют дихлорметаном (2x10 мл). Экстракт сушат над сульфатом натрия и упаривают при пониженном давлении. Продукт выделяют с помощью колоночной хроматографии на силикагеле, используя в качестве элюента смесь этилацетата и н-гексана (1:5). Выход 44 мг (60%). Т. пл. 79-80°С. ИК спектр, v, см⁻¹: 1099, 1225 (С-О); 1371, 1491 (СN); 1667 (С=О); 2927, 2991, 3070 (СН). Спектр ЯМР ¹Н, СDСl₃, δ, м.д. (J, Гц): 1.45 (6Н, с, СH₃); 4.30 (2Н, с, ССН₂О); 4.77 (2H, д, *J* = 4.2, NCH₂O); 6.28 (1H, уш.с, NH). Спектр ЯМР ¹³С, CDCl₃, δ, м.д.: 25.5 (2СН₃); 67.7 (С-3); 75.0 (С-6); 103.2 (С-2); 170.6 (С-6). Масс-спектр, *m/z* (*I*_{отн},%): 146 [M+H]⁺ (100). Найдено, %: С 49.69; Н 7.65; N 9.70. С₆H₁₁NO₃. Вычислено, %: C 49.65; H 7.64; N 9.65.

7,7-Диметил-9Н-тетразоло[1,5-е][1,3,5]диоксазепин (42). К 50% спиртовому раствору 6-(1Н-Бензо[d][1,2,3]триазол-1-ил)-2,2-диметил-4,7дигидро-1,3,5-диоксазепин (39с) (246 мг, 1 ммоль) присыпают азид натрия H_{3C} с H_{3C} (325 мг, 5 ммоль). Реакционную массу выдерживают в течение 240 часов при температуре 40°С. За ходом реакции следят методами ТСХ и ЖХ/МС анализа. По окончании взаимодействия, реакционную массу упаривают. Остаток экстрагируют дихлорэтаном (2х10 мл). Экстракт сушат над сульфатом натрия и упаривают при пониженном давлении. Продукт выделяют с помощью колоночной хроматографии на силикагеле, используя в качестве элюента смесь этилацетата и *н*-гексана (1:5). Выход 110 мг (65%). Т. пл. 86-88°С. ИК спектр, *v*, см⁻¹: 1099, 1219 (С–О); 2994, 3005 (CH). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.54 (6H, с, 2CH₃); 5.16 (2H, с, CCH₂O); 6.03 (2H, с, NCH₂O). Спектр ЯМР ¹³C, DMSO-d₆, δ, м.д.: 23.3 (2CH₃); 55.2 (CCH₂O); 71.6 (NCH₂O); 104.7 (OCO); 154.4 (NCN). Масс-спектр, *m/z* (*I*_{отн},%): 171 [M+H]⁺ (100). Найдено, %: C 42.39; H 5.95; N 32.87. C₆H₁₀N₄O₂. Вычислено, %: C 42.35; H 5.92; N 32.92.

Общая методика получения 4-азолилзамещенных 1Н-имидазолов 51-60.

А) К смеси 1-(1-(*трет*-бутил)-3-нитроазетидин-3-ил)-4-фенил-1*H*-1,2,3триазола (**25d**) (301 мг, 1 ммоль) и азола (5 ммоль) в 5 мл бензола добавляют триэтилфосфит (1.328 г, 8 ммоль). Реакционную массу выдерживают при перемешивании и кипении в течение 3-80 часов. По завершении реакции (TCX, ГХ/МС и ЖХ/МС контроль), растворитель удаляют при пониженном давлении. Продукт выделяют с помощью препаративной хроматографии на силикагеле, используя в качестве элюента смесь этилацетата и *н*-гексана.

Б) Краствору 1-(1-(*трет*-бутил)-2,5-дигидро-1*Н*-имидазол-4-ил)-4-фенил-1*Н*-1,2,3-триазола (**29d**) (100 мг, 0.371 ммоль) в 3 мл бензола добавляют азол (0.371 ммоль). Реакционную массу выдерживают при перемешивании и кипении в течение 10-65 часов. По завершении реакции (ТСХ, ГХ/МС и ЖХ/МС контроль), растворитель удаляют при пониженном давлении. Продукт выделяют с помощью препаративной хроматографии на силикагеле, используя в качестве элюента смесь этилацетата и *н*-гексана.

1-(1-трет-Бутил-1Н-имидазол-4-ил)-1Н-пиразол (**49**). Выход 63 мг (33%) (метод А); 50.7 мг (72%) (метод Б). Т. пл. 85-88°С. ИК спектр, *v*, см⁻¹: 1596 (C=N); 2881, 2930, 2974 (C-H); 3107, 3149 (C-HAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 1.55 (9H, c, CH₃); 6.38 (1H, т, *J* = 2.1, ^{H₃C} – ^{CH₃} CH-4-пиразол); 7.45 (1H, д, ⁴*J* = 1.6, CH-5-имидазол); 7.6 (1H, д, *J* = 1.3, CH-3-пиразол); 7.7 (1H, д, ⁴*J* = 1.6, CH-2-имидазол); 8.11 (1H, д, *J* = 2.3, CH-5-пиразол). Спектр ЯМР ¹3C, DMSO-d₆, δ , м.д.: 29.6 (CH₃); 55.2 (C-CH₃); 104.4 (C-5-имидазол); 105.8 (C-4-пиразол); 126.6 (C-5-пиразол), 132.1 (C-2-имидазол); 139.6 (C-4-имидазол), 140.2 (C-3-

пиразол). Масс-спектр, *m/z* (*I*_{отн},%): 191 [M+H]⁺ (100). MS (EI, 30eV), *m/z* (*I*_{отн},%): 190 [M] (24), 191 [M+1] (3), 134 [M-*t*-Bu] (100). HRMS (ESI): m/z [M+H]⁺ вычислено для C₁₀H₁₅N₄191.1218; найдено 191.1223.

l'-(трет-Бутил)-1'H-1,4'-биимидазол (**50**). Выход 66.5 мг (35%) (метод A); 38.8 мг (55%) (метод Б). Т. пл. 85-87°С. ИК спектр, *v*, см⁻¹: 1591 (C=N); 2805, 2937, 2976 (С-Н); 3111 (С-НАг). Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гц): 1.55 (9H, с, СН₃); 7.01 (1H, с, СН-2-имидазол); 7.50 (1H, с, $H_3^{-C} - CH_3^{-CH_3}$ СН-4-имидазол); 7.61 (1H, д, ⁴*J* = 1.6, СН-5'-имидазол); 7.73 (1H, д, ⁴*J* = 1.6, СН-2'имидазол); 8.01 (1H, с, СН-5-иммдазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 29.6 (СН₃); 55.2 (С-СН₃); 104.8 (С-5'-имидазол); 117.1 (С-5-имидазол); 128.6 (С-2имидазол); 132.5 (С-2'-имидазол); 134.5 (С-4-имидазол); 136.7 (С-4'-имидазол). Массспектр, *m/z* (*I*_{отн},%): 191 [М+Н]⁺ (100). HRMS (ESI): m/z [М+Н]⁺ вычислено для С₁₀Н₁₅N₄ 191.1218; найдено 191.1222.

I-(1-трет-Бутил-1H-имидазол-4-ил)-1H-бензимидазол (**51**). Выход 117.6 мг (49%) (метод А); 46.3 мг (52%) (метод Б). Т. пл. 110-112°С. ИК спектр, *v*, см⁻¹: 1579, 1590 (С=N); 2875, 2933, 2976 (С-Н); 3114, 3126, 3168 (С-НАг). Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гц): 1.59 ^{H₃C} – CH₃ (9H, с, CH₃); 7.20-7.33 (2H, м,CH-бензимидазол); 7.71 (1H, д, *J* = 7.9, CHбензимидазол); 7.78 (1H, д, ⁴*J* = 1.4, CH-5-имидазол); 7.85 (1H, д, ⁴*J* = 1.4, CH-2имидазол); 7.88 (1H, д, *J* = 7.9, CH-бензимидазол); 8.49 (1H, с, CH-бензимидазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 29.3 (CH₃); 55.1 (С-CH₃); 106.0 (С-5-имидазол); 111.4 (CH-бензимидазол); 119.0 (CH-бензимидазол); 121.5 (CH-бензимидазол); 122.5 (CH-бензимидазол); 131.9 (CH-бензимидазол); 132.4 (C-2-имидазол); 135.1 (C-4имидазол); 142.8 (CH-бензимидазол); 141.3 (CH-бензимидазол). Масс-спектр, *m/z* (*I*_{07H3}%): 241 [M+H]⁺ (100). HRMS (ESI): m/z [M+H]⁺ вычислено для C₁₄H₁₇N₄ 241.1374; найдено 241.1383. *1-(1-трет-Бутил-1Н-имидазол-4-ил)-1Н-1,2,3-бензотриазол* (**52**). Выход 108.4 мг (45%) (метод А); 32.2 мг (36%) (метод Б). Т. пл. 129-131°С. ИК спектр, *v*, см⁻¹: 1587, 1612 (С=N); 2877, 2931, 2972 (С-Н); 3136, 3167 (С-НАг). Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гп): ^{H₃C+CH₃} 1.61 (9H, c, CH₃); 7.44-7.51 (1H, м, CH-бензотриазол); 7.58-7.65 (1H, м, CH-бензотриазол); 7.94 (1H, д, ⁴*J* = 1.6, CH-5-имидазол); 7.98 (1H, д, ⁴*J* = 1.6, CH-2имидазол); 8.07-8.11 (2H, м, CH-бензотриазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 29.6 (CH₃); 55.8 (С-СН₃); 108.2 (С-5-имидазол); 112.0 (СН-бензотриазол); 119.0 (СНбензотриазол); 124.2 (СН-бензотриазол); 128.0 (СН-бензотриазол); 131.5 (СНбензотриазол); 133.4 (С-2-имидазол); 136.3 (С-4-имидазол); 144.9 (СН-бензотриазол). Масс-спектр, *m/z* (*I*_{отн},%): 242 [М+Н]⁺ (100). HRMS (ESI): m/z [М+Н]⁺ вычислено для C₁₃H₁₆N₅ 242.1327; найдено 242.1324.

9-(1-трет-Бутил-1Н-имидазол-4-ил)-9Н-пурин-6-амин (53). Выход
110.5 мг (43%) (метод А). Т. пл. 223-225°С. ИК спектр, v, см⁻¹: 1606,
1672 (С=N, NH); 2877, 2931, 2972 (С-Н); 3124 (С-НАг); 3304, 3416,
3489 (N-H). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 1.58 (9H, с,
CH₃); 7.18 (2H, уш. с, NH₂); 7.72 (1H, д, ⁴J = 1.6, CH-5-имидазол);
7.83 (1H, д, ⁴J = 1.6, CH-2-имидазол); 8.22 (1H, с, CH-аденин); 8.44

ĊH

(1H, с, СН-аденин). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 29.8 (СН₃); 55.5 (С-СН₃); 106.3 (С-5-имидазол); 118.9 (СН-аденин); 132.5 (С-2-имидазол); 133.8 (СН-аденин); 137.6 (С-4-имидазол); 148.1 (СН-аденин); 153.0 (СН-аденин); 156.0 (СН-аденин). Массспектр, *m/z* (*I*_{отн},%): 258 [М+Н]⁺ (100). HRMS (ESI): m/z [М+Н]⁺ вычислено для С₁₂Н₁₆N₇ 258.1389; найдено 258.1395.

9-(1-трет-Бутил-1Н-имидазол-4-ил)-6-хлоро-9Н-пурин (54). Выход 35.8 мг (13%) (метод А). Т. пл. 233-235°С. Спектр ЯМР ¹Н, DMSOd₆, δ, м.д. (*J*, Гц): 1.61 (9Н, с, СН₃); 7.84 (1Н, д, ⁴*J* = 1.6, СН-5имидазол); 7.93 (1Н, д, ⁴*J* = 1.6, СН-2-имидазол); 8.85 (1Н, с, СН- _{H₃}с пурин); 8.97 (1H, с, CH-пурин). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 29.7 (CH₃); 55.8 (C-CH₃); 107.7 (C-5-имидазол); 131.1 (CH-пурин); 132.6 (C-2-имидазол); 133.1 (C-4имидазол); 144.3 (CH-пурин); 149.3 (CH-пурин); 150.2 (CH-пурин); 152.0 (CH-пурин). Масс-спектр, *m/z* (*I*_{отн},%): 277 [M+H]⁺ (100). HRMS (ESI): m/z [M+H]⁺ вычислено для C₁₂H₁₄ClN₆ 277.0890; найдено 277.0887.

1-трет-Бутил-4-(4-хлорпиразол-1-ил)имидазол (**55**). Выход 44 мг (53%) (метод Б). Т. пл. 63-64°С. Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гц): 1.55 (9H, c, CH₃); 7.51 (1H, д, ⁴*J* = 1.6, CH-5-имидазол); 7.70 (1H, c, CH-3-пиразол); 7.72 (1H, д, ⁴*J* = 1.6, CH-2-имидазол); 8.27 (1H, c, ^{H₃C-CH₃} CH-5-пиразол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 29.6 (CH₃); 55.4 (C-CH₃); 105.0 (C-5-имидазол); 109.3 (C-4-пиразол); 125.1 (C-5-пиразол); 132.4 (C-2имидазол); 138.0 (C-4-имидазол); 139.6 (C-3-пиразол). Масс-спектр, *m/z* (*I*_{отн},%): 225 [M+H]⁺ (100). HRMS (ESI): m/z [M+H]⁺ вычислено для C₁₀H₁₄ClN₄ 225.0828; найдено 225.0831.

I-(1-трет-Бутил-1Н-имидазол-4-ил)4-нитро-1Н-пиразол (56). Выход 57.5 мг (66%) (метод Б). Т. пл. 157-161°С. ИК спектр, *v*, см⁻¹: 1514, 1545 (NO₂); 1639 (C=N); 2924, 2982 (C-H); 3072, 3157 (C-HAr). Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гц): 1.57 (9H, с, CH₃); 7.79 (1H, ^{H₃C-CH₃ сH₃), 4*J* = 1.6, CH-5-имидазол); 7.96 (1H, д, ⁴*J* = 1.6, CH-2-имидазол); 8.44 (1H, с, CH-3пиразол); 9.03 (1H, с, CH-5-пиразол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 29.6 (CH₃); 56.3 (C-CH₃); 107.3 (C-5-имидазол); 126.4 (C-3-пиразол); 133.2 (C-2-имидазол); 135.7 (C-5-пиразол); 136.4 (C-4-имидазол); 137.6 (C-4-пиразол). Масс-спектр, *m/z* (*I*_{отн},%): 236 [M+H]⁺ (100). HRMS (ESI): m/z [M+H]⁺ вычислено для C₁₀H₁₄N₅O₂ 236.1069; найдено 236.1063.}

1-(1-трет-Бутил-1Н-имидазол-4-ил)-1Н-1,2,4-триазол (**57**). Выход 28.4 мг (40%) (метод Б). Т. пл. 61-63°С. ИК спектр, *v*, см⁻¹: 1604 (C=N); 2820, 2931, 2971 (C-H); 3102, 3132 (C-HAr). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д.

(*J*, Гц): 1.56 (9H, c, CH₃); 7.60 (1H, д, ⁴*J* = 1.6, CH-5-имидазол); 7.79 (1H, д, ⁴*J* = 1.6, CH-2-имидазол); 8.11 (1H, c, CH-3-триазол); 8.85 (1H, c, CH-5-триазол). Спектр ЯМР ¹³C, DMSO-d₆, δ, м.д.: 29.6 (CH₃); 55.6 (C-CH₃); 106.6 (C-5-имидазол); 132.9 (C-2имидазол); 136.8 (C-4-имидазол); 141.4 (C-3-триазол); 151.6 (C-5-триазол). Массспектр, *m/z* (*I*_{отн},%): 192 [M+H]⁺ (100). HRMS (ESI): m/z [M+H]⁺ вычислено для C₉H₁₄N₅ 192.1171; найдено 192.1175.

1-(1Н-Имидазол-4-ил)-4-фенил-1Н-1,2,3-триазол (**59**). К раствору **32d** (0.432 г, 1.62 ммоль) в 10 мл толуола при перемешивании добавляют безводный хлорид алюминия (1.321 г, 8.08 ммоль). Полученную смесь облучают в микроволновой печи (300 Вт) при

температуре 100°С в течение 20 минут. По окончании взаимодействия реакционную массу фильтруют через целит, фильтрат упаривают при пониженном давлении, продукт выделяют с помощью препаративной хроматографии на силикагеле, используя в качестве элюента смесь этилацетата и этанола. Выход 300 мг (88%). Т. пл. 211-213°С. Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Гц): 7.36 (1H, т, *J* = 7.4, Ph); 7.47 (2H, т, *J* = 7.6, Ph); 7.63 (1H, с, CH-5-имидазол); 7.79 (1H, с, CH-2-имидазол); 7.96 (2H, д, *J* = 7.2, Ph); 8.90 (1H, с, CH-5-триазол); 12.58 (1H, уш. с, NH). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 106.5 (C-5-имидазол); 119.1 (C-5-триазол); 125.2 (Ph); 127.8 (Ph); 130.3 (Ph); 134.2 (C-2-имидазол); 136.3 (C-4-имидазол); 146.2. (C-4-триазол). Масс-спектр, *m/z* (*I*_{отп},%): 212 [M+H]⁺ (100). Найдено, %: C 62.50, H 4.35, N 33.07. C₁₁H₉N₅. Вычислено, %: C 62.55, H 4.29, N 33.16.

1-(1Н-Имидазол-4-ил)-1Н-1,2,3-триазол (60). Получено из **32а** согласно методике для **61**. Заргузка исходного имидазола 4.43 ммоль. Выход 545 мг (91%). Т. пл. разлагается при плавлении. Спектр ЯМР ¹Н, DMSO-d₆, δ , м.д. (*J*, Γ ц): 7.52 (1H, д, ⁴*J* = 1.4, CH-5-имидазол); 7.70 (1H, д, ⁴*J* = 1.4, CH-2-имидазол); 7.81 (1H, д, ⁴*J* = 1.0, CH-4-триазол); 8.39 (1H, д, ⁴*J* = 1.0, CH-5-триазол);12.83 (1H, уш. с, NH). Масс-спектр, *m/z* (*I*_{отн},%): 136 [M+H]⁺ (100). Найдено, %: C 44.50, H 3.75, N 51.87. C₅H₅N₅. Вычислено, %: C 44.44, H 3.73, N 51.83.

1-(1-трет-Бутил-1Н-имидазол-4-ил)4-нитро-1Н-пиразол (56). К 2.9 мл концентрированной азотной кислоты (4.3 г, 68.2 ммоль, $\rho = 1.52 \text{ г/см}^3$) при температуре 0-5°С дозируют 49 (100 мг, 0.53 ммоль). Смесь выдерживают 40 минут (контроль по TCX), затем $H_3C \leftarrow CH_3$ выливают в 5 г льда и экстрагируют этилацетатом (2х8 мл).

Объединенный экстракт промывают 8 мл воды, затем 8 мл 5%-ого раствора гидрокарбоната натрия и 8 мл насыщенного раствора хлорида натрия. Органический слой отделяют и сушат над сульфатом натрия, затем упаривают при пониженном давлении. Выход 75 мг (61%).

 $-NO_2$

Спектральные характеристики соответствуют ранее описанным.

4-нитро-1-(2-нитро-1Н-имидазол-4-ил)-1Н-пиразол (**62**). К 1.8 мл концентрированной азотной кислоты (2.7 г, 43 ммоль, ρ = 1.52 г/см³) при температуре 0-5°C дозируют **51** (52 мг, 0.27 ο₂N

ммоль). Смесь выдерживают 40 минут при температуре 0-5°С. За ходом реакции следят методом ЖХ/МС. Фиксируют образование в реакционной смеси 56. Затем при 0-5°С приливают 1.48 мл концентрированной серной кислоты (2.72 г, 28 ммоль, ρ = 1.835 г/см³). После этого выдерживают смесь в течение 24 ч при комнатной температуре. По окончании выдержки раствор выливают в 6 г льда и экстрагируют этилацетатом (2x8 мл). Объединенный экстракт промывают 8 мл воды, затем 8 мл 5%-ого раствора гидрокарбоната натрия и 8 мл насыщенного раствора хлорида натрия. Органический слой отделяют и сушат над сульфатом натрия, затем упаривают при пониженном давлении. Выход 28 мг (45%). Т. пл. 262-265°С. ИК спектр, *v*, см⁻¹: 1360, 1369, 1512, 1539 (NO₂); 1612 (C=N); 2771-2928 (NHN); 3152 (CH). Спектр ЯМР ¹H, DMSO-d₆, δ, м.д. (*J*, Гц): 8.07 (1H, с, CH-5-имидазол); 8.68 (1H, д, J = 0.6, CH-3-пиразол); 9.47 (д, 1H, J = 0.6, CH-5-пиразол). Спектр ЯМР ¹³С, DMSO-d₆, δ, м.д.: 128.4 (С-4-имидазол); 133.0 (С-5-пиразол); 133.7 (С-2-имидазол); 133.9 (С-5-имидазол); 136.1 (С-4-пиразол); 137.0 (С-3-пиразол). Масс-спектр, *m/z* (*I*_{отн},%): 225 [M+H]⁺ (100). Найдено, %: С 32.20, Н 1.75, N 37.47. С₆H₄N₆O₄. Вычислено, %: С 32.15, Н 1.80, N 37.50.

2-нитро-2-(1H-1,2,3-триазол-1-ил)пропан-1,3-диолдинитрат (64е). В 10 мл хлористого метилена при температуре 0-5°С добавляют концентрированную азотную кислоту (504 мг, 8 ммоль, ρ = 1,51 г/см³)

и уксусный ангидрид (816 мг, 8 ммоль). К полученному раствору присыпают 2нитро-2-(1*H*-1,2,3-триазол)пропан-1,3-диол (**16e**) (500 мг, 2.66 ммоль). Смесь выдерживают 30 минут при температуре 5-10°С, а затем 4 часа при комнатной температуре. По окончании выдержки раствор выливают в 5 г льда и экстрагируют 2 раза по 50 мл хлористым метиленом. Объединенный экстракт промывают 50 мл воды, затем 50 мл 2-х % раствора гидрокарбоната натрия и снова водой, сушат над сульфатом магния затем упаривают при пониженном давлении. Выход 338 мг (46%). Светло-желтое масло. ИК спектр, *v*, см⁻¹: 1279, 1666 (ONO₂); 1384, 1581 (CNO₂); 3145, 3167 (CH). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 5.83 (2H, д, *J* = 12.8, CH₂); 5.92 (2H, д, *J* = 12.8, CH₂); 8.05 (1H, д, ⁴*J* = 1.0, CH-4триазол); 8.78 (1H, д, ⁴*J* = 1.0, CH-5-триазол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 69.1 (CH₂); 95.4 (<u>C</u>CH₂); 126.7 (C-5-триазол); 134.5 (C-4-триазол). Масс-спектр, *m/z* (*I*_{отн},%): 279 [M+H]⁺ (30); 320 [M+CH₃CN]⁺ (100). Найдено, %: С 21.63, H 2.20, N 30.25. C₅H₆N₆O₈. Вычислено, %: С 21.59, H 2.17, N 30.22.

Соединения **64i,l** синтезированы согласно ранее описанной процедуре [94]. Выходы составили 60 и 72% соответственно. Спектральные данные совпадают с описанными.

2-нитро-2-(2Н-тетразол-2-ил)пропан-1,3-диол динитрат (64j). В 3 мл хлористого метилена при температуре 0-5°С добавляют концентрированную азотную кислоту (170 мкл, 264 мг, 4.2 ммоль, р

= 1.53 г/см³) и трифторуксусный ангидрид (195 мкл, 294 мг, 1.4 ммоль, ρ = 1.511 г/см³). К полученному раствору присыпают 2-нитро-2-(2*H*-тетразол-2-ил)пропан-1,3-диол **63j** (80 мг, 0.42 ммоль). Смесь выдерживают 1 ч при температуре 0-5°С, а затем 24 ч при комнатной температуре. По окончании выдержки раствор выливают в 1 г льда и экстрагируют хлористым метиленом (2х5 мл). Объединенный экстракт промывают 5 мл воды, затем 5 мл 2%-ого раствора гидрокарбоната натрия и снова 5 мл воды. Органический слой отделяют и сушат над сульфатом натрия, затем упаривают при пониженном давлении. Продукт выделяют с помощью колоночной хроматографии на силикагеле, используя в качестве элюента смесь этилацетата и *н*-гексана (1:3). Выход 40 мг (33%). Светложелтое масло. ИК спектр, *v*, см⁻¹: 1272, 1657 (O-NO₂); 1384, 1580 (NO₂); 2850, 2922, 3021 (CH); 3158 (CHAr). Спектр ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 5.68 (2H, д, *J* = 12.8, CH₂); 5.83 (2H, д, *J* = 12.8, CH₂); 8.76 (1H с, CH-тетразол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 66.0 (CH₂), 94.6 (<u>C</u>CH₂), 153.0 (CH-тетразол). Найдено, %: C 17.23, H 1.83, N 35.16. C₄H₅N₇O₈. Вычислено, %: C 17.21, H 1.81, N 35.13.

2-(1,3-динитроазетидин-3-ил)-2H-тетразол (65). Получено из 27b согласно методике для 65j. Заргузка исходного азетидина 0.78 ммоль. Выход 100 мг (60%). Т. пл. 155-157°С. ИК спектр, *v*, см⁻¹: 1277, 1587 (N-NO₂); 1353, 1558 (NO₂); 2925, 2980, 3046 (CH); 3139 (CHAr). Спектр N_{NO_2} ЯМР ¹H, DMSO-d₆, δ , м.д. (*J*, Гц): 5.46-5.54 (2H, м, CH₂); 5.64 (2H, д, *J* = 12.5, CH₂); 9.36 (1H, с,CH-тетразол). Спектр ЯМР ¹³С, DMSO-d₆, δ , м.д.: 64.1 (CH₂); 87.7(<u>C</u>CH₂); 154.2 (CH-тетразол). Масс-спектр, *m/z* (*I*_{отн},%): 216 [M+H]⁺ (100). Найдено, %: C 22.35, H 2.38, N 45.65. C₄H₅N₇O₄. Вычислено, %: C 22.33, H 2.34, N 45.58.

Выводы

1. Впервые, систематически исследовано взаимодействие нитросодержащих алициклических гетероциклов с соединениями трехвалентного фосфора. Обнаружено, что происходит каскадное превращение, сопровождающееся расширением цикла исходного нитросоединения. Показано, что взаимодействие нитросодержащих алигетероциклов с соединениями фосфора (III) позволяет получать новые азотсодержащие гетероциклические системы.

2. Предложен механизм реакции взаимодействия нитросодержащих алициклических гетероциклов с соединениями трехвалентного фосфора.

3. На основе реакций 3-нитро-3-азолилзамещенных азетидинов, 5нитро-5-азолилзамещенных-1,3-диоксанов, а также 5-нитро-5-азолилзамещенных гексагидропиримидинов и 5-нитро-5-азолилзамещенных тетрагидрооксазинов с триэтилфосфитом показано, что применимость реакции дезоксигенирования существенным образом зависит от строения насыщенного нитрогетероцикла.

4. Впервые разработан общий метод получения замещенных 1-(2,5дигидро-1*H*-имидазол-4-ил)-1*H*-1,2,3-триазолов из 3-нитро-3-триазолилзамещенных азетидинов. Предложен новый метод синтеза 1-(1*H*-имидазол-4-ил)-1*H*-1,2,3триазолов, заключающийся в окислении 1-(2,5-дигидро-1*H*-имидазол-4-ил)-1*H*-1,2,3триазолов.

5. Впервые предложен одностадийный и двухстадийный способы получения 4-азолилзамещенных-1*H*-имидазолов из 1-(1-*трет*-бутил-3-нитроазетидин-3-ил)-4-фенил-1*H*-1,2,3-триазола и 1-(1-*трет*-бутил-2,5-дигидро-1*H*-имидазол-4-ил)-4-фенил-1*H*-1,2,3-триазола.

6. Впервые на примере взаимодействия 5-нитро-5-азолилзамещенных-1,3диоксанов с триэтилфосфитом разработан метод синтеза ранее недоступных 6гетерилзамещенных 4,7-дигидро-1,3,5-диоксазепинов.

 Исследована реакция фотоиндуцированного алкилирования 5-нитро-1,3-диоксанов, 5-нитро-1,3-оксазинанов и 3-нитроазетидинов. Обнаружено, что селективно образуются 5-нитро-5-азолилзамещенные-1,3-диоксаны, 5-нитро-5-азолилзамещенные-1,3-оксазинаны и 3-нитро-3-азолилзамещенные азетидины.

8. Изучена антимикробная активность некоторых соединений. Показано, что ряд 1*H*-имидазолов имеет противогрибковую активность в отношении трех видов *(Rhizoctonia solani, Venturia inaequalis, Bipolaris sorokiniana).*

Список литературы

- Ono, N. The Nitro Group in Organic Synthesis/ N.Ono. A John Wiley & Sons, Inc. New York, 2001. – P. 383.
- Larock, R.C. Comprehensive Organic Transformations/ R.C. Larock. VCH, New York, 1989. – P. 411-415.
- Kabalka, G.W. Reduction of nitro and nitroso Compounds, in Comprehensive organic Synthesis, ed. by B.M. Trost and E. Fleming/ G.W. Kabalka, and R.S. Varma. – Pergamon Press, Oxford, 1991. – V. 8. – P. 363-379.
- 4. Sandler, S.R. Organic Functional Group Preparation/ S.R. Sandler, and W. Karo.
 Academic Press, New York, 1968. P. 339-345.
- Hudlicky, M. Reductions in Organic Chemistry, 2nd ed/ M. Hudlicky. American Chemical Society, Washington DC, 1996.
- 6. Wertheim, E., Org. Synth., 2, 1943. P. 471.
- 7. Martin, E.L., Org. Synth., 2, 1943. P. 501.
- 8. Mahood, S.A., and Schaffner P.V.L., Org. Synth., 2, 1943. P. 160.
- 9. Fox, B.A. and Threlfall T.L., Org. Synth., 5, 1973. P. 346.
- 10.Clarke, H.T., and Hartman W.W., Org. Synth., 1, 1941. P. 455.
- 11.Hartman, W.W., Dickey J.B., and Stampfli J.G., Org. Synth., 2, 1943. P. 175.
- 12.Dirmoth, K., Berndt A., Perst H., and Reichardt C., Org. Synth., 5, 1973. P. 1130.
- 13.Ickk, R.N., Redemann C.E., Wisegarver B.B., and Alles G.A., Org. Synth., 3, 1955. P. 59.
- 14. Allene, G.F.H., and Allan J.V., Org. Synth., 3, 1955. P. 63.
- 15.Adams, R., and Cohen F.L., Org. Synth., 1, 1941. P. 240.
- 16.Mendenhall, G.D., and Smith P.A., Org. Synth., 5, 1973. P. 829.
- 17.Bavin, P.M.G., Org. Synth., 5, 1973. P. 30.

- 18.Kende, A. Controlled reduction of nitroalkanes to alkyl hydroxylamines or amines by samarium diiodide/ A.S. Kende and J.S. Mendoza// Tetrahedron Letters. – 1991. – V. 32. – P. 1699-1702.
- 19.Barton, D. Reduction of Oximes and Aliphatic Nitro Compounds to imines for Further *in situ* Reactions: A Novel Synthesis of Pyrroles and Pyrrolin-2-ones/ Derek H. R. Barton, William B. Motherwell, Ethan S. Simon, and Samir Z. Zard// J. Chem. SOC. Perkin Trans. I. – 1986. – P. 2243-2252.
- 20.Kabalka, G. Selected reduction of Conjugated nitroalkanes/ G.W. Kabalka, L.H.M. Guindi// Tetrahrdron. 1990. V. 46. P. 7443-7457.
- 21.Trippett, S. The Reaction of Triphenylphosphine with 1-Bromo-l-nitroalkanes/ S. Trippett, J. Walker// J. Chem. SOC. 1960. P. 2976-2978.
- 22.Speziale, J. Reaction of Phosphorus Compounds. IV. Haloenamines and Imidoyl Chlorides from Reaction of Phosphines with Haloamides/ A.J. Speziale and L.R.Smith// J. Amer. Chem. Soc. – 1962. – V. 84. – P. 1868-1876.
- 23.Grundman, C. Nitrile Oxides. III. Reduction of Nitrile Oxides to Nitriles/ C. Grundman and H. D. Frommeld// J. Org. Chem. 1965. –V. 30. P. 2077-2078.
- 24.Sundberg, R. Deoxygenation of Nitro Groups by Trivalent Phosphorus. Indoles from *o*-Nitrostyrenes/ R.J. Sundberg// J. Org. Chem. – 1965. - V.30. – P. 3604-3610.
- 25.Sundberg, R. A Study of the Deoxygenation of Some *o*-Alkylnitro- and *o*-Alkylnitrosobenzenes in Triethyl Phosphite/ R.J. Sundberg// J. Amer. Chem. Soc. 1966. V. 88. P. 3781-3789.
- 26.Horner, L. Praparative und analytische Bedeutung tertiarer Phosphineund verwandterVerbindungen/ L.Horner and H. Hoffmann//Angew. Chem. – 1956. – V. 68. –P. 473-485.
- 27.Арбузов, А. О действии α-бромнитроуглеводородов на этиловый эфир фосфористой кислоты/ А.Е. Арбузов, Б.А. Арбузов, Б.П. Луговкин// Известия Академии Наук СССР. Отделение Химических наук. 1947. №5. Р. 535-538.

- 28.Bunyan, P. Deoxygenation of Aromatic C-Nitroso compounds by Triethyl Phosphite and Triphenylphosphine: a New Cyclisation Reaction/ P.J. Bunyan and J.I.G. Cadogan// Organophosphorus Compounds. Part XIV. 1963. P. 42-49.
- 29.Cadogan, J. Reduction of Nitro empounds by Triethyl Phosphite: a convenient New Route to Carbazoles, Indoles, Indazoles, Triazoles, and Related compounds/ J.I.G. Cadogan, M. Cameron-Wood, K. Mackie and R.J.G. Searle// Organophosphorus Compounds. Part XIX. – 1965. – P. 4831-4837.
- 30.Cadogan, J. Oxidation of tervalent organic compounds of phosphorus/ J.I.G. Cadogan// Quarterly Reviews, Chemical Society. – 1962. – V. 16. – P. 208-232.
- 31.Cadogan, J. Reductive Cyclisation of Nitro Compounds by Triethyl Phosphite: New Syntheses of Phenothiazines and Anthranils/ J.I.G. Cadogan, R.K. Mackie, and M.J. Todd// Chemical Communication (London). – 1966. – P. 491.
- 32.Cadogan, J. Ring Expansion during the Reaction of Simple Aromatic Nitro Compounds with Triethyl Phosphite/ J.I.G. Cadogan, R.K. Mackie, and M.J. Todd// Chemical Communication (London). – 1968. – P. 736a-737a.
- 33.Cadogan, J. Deoxygenation of 2-Nitrophenyl Phenyl Sulphides by Triethyl Phosphite: A New Aromatic Rearrangement/ J.I.G. Cadogan, S. Kulik, and M.J. Todd// Chemical Communication (London). – 1968. – P. 736b-737b.
- 34.Cadogan, J. A Novel Displacement of the Nitro-group from p-Nitrotoluene and Related compounds/ J.I.G. Cadogan, D.J. Sears, and D.M. Smith// Chemical Communication (London). – 1968. – P. 1107.
- 35.Cadogan, J. Reduction of Nitro- and Nitroso compounds by Tervalent Phosphorus Reagents/ J.I.G. Cadogan// Quarterly Reviews, Chemical Society. – 1968. – V. 22. – P. 222-251.
- 36.Cadogan, J. Reduction of Nitro- and Nitroso compounds by Tervalent Phosphorus Reagents. Part IV. Mechanistic Aspects of the Reduction of 2,4,6trimethyl-2'-nitrobiphenyl, 2-nitrobiphenyl, and nitrobenzene/ J.I.G. Cadogan and M.J. Todd// J. Chem. Soc. (C). – 1969. – P. 2808-2813.

- 37.Smolinsky, G. Deoxygenation of Nitro Groups. The Question of Nitrene Formation/ G.Smolinsky and B. Fewer// J. Org. Chem. – 1966. – V. 31. – P 3882-3884.
- 38.Smolinsky, G. Nitrene Insertion into a C-H Bond at an Asymmetric Carbon Atom with Retention of Optical Activity/ G. Smolinsky and B.I. Feuer// J. Amer. Chem. Soc. -1964. - V. 86. - P. 3085-3088.
- 39.Fischer, B. Diethyl Chlorophosphite: A Mild Reagent for Efficient Reduction of Nitro compounds to Amines/ Bilha Fischer and Larisa Sheihet// J. Org. Chem. – 1998. – V.63. –P. 393-395.
- 40.Kubota, Y. Nucleophilic Reactions of 5-*tert*-Butyl-2-methoxy-3*H*-azepine with Alkoxides and Alkyllithium Reagents/ Y. Kubota, K. Satake, R. Ikui, H. Okamoto, and M. Kimura// Bull. Chem. Soc. Jpn. 2003. V. 76. P. 805–811.
- 41.Sundberg, R. Photochemical Deoxygenation of Aromatic Nitro Compounds in Triethyl Phosphite. Substituent Effects and Evidence for the Involvement of Aryl Nitrenes/ Richard J. Sundberg, Bijan P. Das, and Richard H. Smith, Jr.// J. Amer. Chem. Soc. – 1969. – V. 91, – P. 658-668.
- 42.Merisor, E. Microwave-Assisted Reductive Cyclization of N-Allyl 2-Nitroanilines: A New Approach to Substituted 1,2,3,4-Tetrahydroquinoxalines/ E. Merisor, J. Conrad, S. Mika, U. Beifuss// Synlett. – 2007. – V. 13. – P. 2033-2036.
- 43.Malakar, C. MoO₂Cl₂(dmf)₂-Catalyzed Domino Reactions of ω-Nitro Alkenes to 3,4-Dihydro-2*H*-1,4-benzothiazines and Other Heterocycles/ C. Malakar, E. Merisor, J. Conrad, U. Beifuss// Synlett. 2010. V. 12. P. 1766-1770.
- 44.Suschitzky, H. Syntheses of Heterocyclic Compounds. Part XXII. Routes to Naphthimidazoles and Imidazoquinolines/ H. Suschitzky and M.E. Sutton// J. Chem. SOC. (C). – 1968. – P. 3058-3062.
- 45.Roscales, S. Transition-Metal-Free Three-Component Synthesis of Tertiary Aryl Amines from Nitro Compounds, Boronic Acids, and Trialkyl Phosphites/ S. Roscales and A.G. Csaky// Adv. Synth. Catal. – 2020. –V. 362. – P. 111-117.

- 46.Majgier-Baranowska, H. Studies on the mechanism of the Cadogan–Sundberg indole synthesis/ Helena Majgier-Baranowska, John D. Williams, Bing Li, Norton P. Peet// Tetrahedron Letters. – 2012. – V. 53. – P. 4785-4788.
- 47.Cotterill, A. An Improved Synthesis of the Indolequinone Anticancer agent EO9/ A.S. Cotterill, C.J. Moody, and J.R.A. Roffey// Tetrahedron. – 1995. – V.51. – P. 7223-7230.
- 48.Holzapfel, C. Stille and Suzuki cross coupling reactions of *o*-nitrophenyl triflates: a versatile route to a variety of heterocycles/ Cedric W. Holzapfel and Catherine Dwye// Heterocycles. – 1998. – V. 48. – P. 1513-1518.
- 49.Abramovitch, R. Ring Contraction of 2-Azidoquinoline and Quinoxaline 1-Oxides/ Rudolph A. Abramovitch and Berkeley W. Cue, Jr.// J. Org. Chem. – 1980. – V.45. – P.5316-5319.
- 50.Daneli, B. Ind-N-Alkylation of Rutaecarpine and Synthesis of Two Novel Related Heterocyclic systems: Indolo[1',2':3,4]pyrazo[1,2-a]quinazoline and Indolo[1',2':3,4][1,4]diazepine[1,2-a]quinazoline/ B. Daneli, and G. Palmisano// J. Heterocyclic Chem. – 1977. – V.14. – P. 839-844.
- 51.Sundberg, R. The O-Styrylnitrene Route to 2-Substituted Indoles. Pyrolysis of *o*-Azidostyrene/ R.J. Sundberg, H.F. Russell, W.V. Ligon, Jr., and Long-Su Lin// J. Org. Chem. – 1972. –V.37. – P. 719-24.
- 52.Wadia, M. Facile Syntheses of Ethyl 2-Alkylindole-3-carboxylates: Reinvestigation of an Earlier Synthesis of Ethyl 3-Methyl-indole-2-carboxylates/ M.S. Wadia, R.S. Mali, S.G. Tilve, V. Yadav// J. Synthesis. – 1987. – P. 401-404.
- 53.Gribble, G. New Reactions of 3-Vinylindoles. II. Synthesis of 1,2-Dimethyl-3-(2indolylcarboayl)piperidine/ G.W. Gribble// J. Org. Chem. – 1973. – V. 38. – P. 4074-4075.
- 54.Jesudoss, K. Synthesis of 2,2'-Biindolyls; Potential Intermediates for Indolocarbazole Alkaloids/ K. Jesudoss and P.C. Srinivasan// Synth. Commun. – 1994. – V. 24. – P. 1701-1708.

- 55.Sundberg, R. Rearrangements and Ring Expansions during the Deoxygenation of β,β-Disubstituted *o*-Nitrostyrenes/ R. Sundberg and T. Maza// J. Org. Chem. – 1967. – V. 32. – P. 290-294.
- 56.Mali, R. Convenient Synthesis of 2-Vinylindoles/ R.S. Mali and S.G. Tilve// Synth. Commun. – 1990. – V. 20. – P. 2041-2047.
- 57.Taylor, E. New Syntheses of Pyrrolo[2,3-d]- and Pyrrolo [3,2-d]pyrimidines/ E.C. Taylor and E.E. Garcia// J. Org. Chem. – 1965. – V. 30. – P. 655-656.
- 58.Carotti, A. 8-Substituted-9-deazaxanthines as adenosine receptor ligands: design, synthesis and structure-affinity relationships at A_{2B}/ Angelo Carotti, Angela Stefanachi, Enrique Raviña, Eddy Sotelo, Maria Isabel Loza, Maria Isabel Cadavid, Nuria B. Centeno, Orazio Nicolotti// European Journal of Medicinal Chemistry. 2004. V. 39. P. 879-887.
- 59.Kametani, T. Nitrene. Part XIII. Novel Conversion of 2-Nitrophenyl Substituted Butyrolactones into Indoles with Triethyl Phosphite/ T. Kametani, F.F. Ebetino, and K. Fukumoto// J. Chem. Soc. Perkin Trans. 1. – 1974. – P. 861-863.
- 60.Tanaka, A. Synthesis of 4*H*-Furo[3,2-b]indole derivatives. III (1). Preparation of 4*H*-Furo[3,2-b]indole-2-carboxylic acid derivatives/ Akira Tanaka// J. Heterocyclic Chem. 1979. V. 16. P. 785-788.
- 61.Puskas, I. Reactions of Nitropolymethylbiphenyls/ I. Puskas and E.K. Fields// J. Org. Chem. 1968. V. 33. P. 4237-4242.
- 62.Bhatthula, B. Total synthesis of carbazole alkaloids/ Bharath kumar goud Bhatthula, Janardhan reddy Kanchani, Veera reddy Arava and M.C.S. Subha// Tetrahedron. 2019. V. 75. P. 874-887.
- 63.Vyprachticky, D. Efficient synthesis of N-alkyl-2,7-dihalocarbazoles by simultaneous carbazole ring closure and N-alkylation/ Drahomír Vyprachticky, Ivan Kmínek, Veronika Pokorna, Vera Cimrova// Tetrahedron. 2012. V. 68. P. 5075-5080.
- 64.Tsunashima, Y. The Chemistry of Carbazole. VI. On the Formation of N-Ethylcarbazoies in the Cadogan Reaction/ Yutaka Tsunashima and Masatane Kuroki// J. Heterocyclic Chem. – 1981. – V. 18. – P. 315-318.

- 65.Cadogan, J. 2-Phenylindazole/ J.I.G. Cadogan and R.K. Mackie// Organic Syntheses, Coll. 1968. V. 48. P. 113-118.
- 66.Cadogan, J. Reduction of Nitro- and Nitroso-compounds by Tervalent Phosphorus. Reagents. Part VII. Syntheses of Benzimidazoles and Anthranils/ J.I.G. Cadogan, R. Marshall, D.M. Smith, and M.J. Todd// J. Chem. Soc. (C). – 1970. – P. 2441-2443.
- 67.Cuevas, J. Synthesis and Complexing Properties of Macrocycles In Corporating 2,2'-Biindazolyl Binding Subunits/ Juan C. Cuevas, Javier de Mendoza, and Pilar Prados// J. Org. Chem. – 1988. – V. 53. – P. 2055-2066.
- 68.Subramanian, G. Reactions of Benzotriazolo[2,1-a]benzotriazole Derivatives. 1. Synthesis of New Insensitive High-Density Energetic Compounds/ Ganesan Subramanian, Joseph H. Boyer, Dan Buzatu, Edwin D. Stevens, and Mark L. Trudell// J. Org. Chem. – 1996. – V. 60. – P. 6110-6113.
- 69.Kauer, J. Aromatic Azapentalenes. III. 1,3a,6,6a-Tetraazapentalenes/ J.C. Kauer and R.A. Carboni// J. Amer. Chem. Soc. 1967. V. 89. P. 2633-2637.
- 70.Lynch, B. Pyrazolo [1,2-a] benzotriazole and Related Compounds/ Brian M. Lynch and Yuk-Yung Hung// J. Heterocyclic Chem. 1965. V. 2. P. 218-220.
- 71.Sieper, H. Uber Eine Bildungsweise Isomeren-freier Nitrophenylphosphonsaureester/ Helmut Sieper// Tetrahedron Letters. – 1967. – V. 21. – P. 1987-1989.
- 72.Sieper, H. Synthese neuer heterocyclischer Ringsysteme aus Derivaten des pevi-Naphthotriazins/ Helmut Sieperund Peter Tavs// Liebigs Ann. Chem. – 1967. – V. 704. – P. 161-165.
- 73.Murray, A. A New Heteroarornatic Ring System derived from 3,4-Dihydro-4oxo-1,2,3-benzotriazine/ A.W. Murray and K. Vaughan// Chemical Communication (London). – 1967. – P. 1282-1283.
- 74.Haggam, R. Microwave-promoted syntheses of fluoren-9-ones and benzisoxazoles/ Reda A. Haggam and Hassan A. El-Sayed// Research on Chemical Intermediates. – 2015. – V. 41. – P. 8159-8172.

- 75.Sandin, R. The Hayashi Rearrangement of Substituted *o*-Benzoylbenzoic Acids/ R. Sandin, R. Elby, R. Crawford and D. McGreer// J. Amer. Chem. Soc. – 1956. – V. 78. – P. 3817-3819.
- 76.Cadogan, J. The Reaction of Triethyl Phosphite with *o*-Dinitrobenzene: Evidence for Aromatic Substitution by Tervalent Phosphorus/ J.I.G. Cadogan, J. Sears, and D.M. Smith// Chem. Comm. – 1966. – P. 491-492.
- 77.Allen, F. Phosphorus (V) Acid Esters of Oximes/ J. Forrest Allen// J. Amer. Chem. Soc. – 1957. – V. 79. – P. 3071-3073.
- 78.Wehrli, P. Direct Transformation of Primary Nitro Compounds into Nitriles. New Syntheses of a,β-Unsaturated Nitriles and Cyanohydrin Acetates/ P.A. Wehrli and B. Schaer// J. Org. Chem. – 1977. – V. 42. – P. 3956-3958.
- 79.Burdon, J. Reaction of gem-nitronitroso-compounds with triethyl phosphite/ J.
 Burdon and A. Ramirez// Tetrahedron. 1973. V. 29. P. 4195-4198.
- 80.Corey, E. Reaction of Oxime O-Acetates with Chromous Acetate. A Method for the conversion of Ketoximes to Ketones under Mild conditions/ E.J. Corey, Jack E. Richman// J. Amer. Chem. Soc. – 1970. – V. 92. – P. 5276-5277.
- 81.McMurray, J. A New Method for the conversion of Nitro Groups into Carbonyls/ J.E. McMurry and J. Melton// J. Org. Chem. – 1973. – V. 38. – P. 4367-4373.
- 82.Hata, T. A Convenient method for the synthesis of 5'-S-alkilthio-5'deoxyribonucleosides/ I. Nakagawa and T. Hata// Tetrahedron Letters. – 1975. – V.17.–No. 17. – P. 1409-1412.
- 83.Trippett, S. The Reaction of Triphenylphosphine with 1-Bromo-1-nitroalkanes/ S. Trippett, J. Walker, and H. Hoffmann// J. Chem. Soc. 1965. –P. 7140-7141.
- 84.Fishwick, B. Bromonitromethan–A Versatile Electrophile/ B.R. Fishwick, D.K. Rowles, and C.J.M. Stirling// J. Chem. Soc. Perkin Trans I. – 1986. – P. 1171-1179.
- 85.Kim, K. Dialkyl (1-Hydroxyiminoalkyl)phosphonates from 1-Bromo-1nitroalkanes and Trialkyl Phosphites/ Kwan Soo Kim, Eun Young Hurh, Jae Nam Youn, and Jong Il Park// J. Org. Chem. – 1999. – V. 64. – P. 9272-9274.

- 86.Ohno, M. Reactions of *gem*-Halonitrosocycloalkanes with Triphenylphosphine. A New Synthesis of Lactams/ Masaji Ohno and Ikuo Sakai// Tetrahedron Letters. – 1965. – V. 50. – P. 4541-4544.
- 87.Ohno, M. Reactions of *gem*-Chloronitrocycloalkanes with Triphenylphosphine/ Masaji Ohno and Norio Kawabe// Tetrahedron Letters. – 1966. – V. 33. – P. 3935-3938.
- 88.Burgess, H. The Reactions of Halogenated Phenylnitromethanes with Triethylphosphite/ Helen Burgess and John A. Donnelly// Tetrahedron. – 1991. – V. 47. – P. 111-120.
- 89.Gras, J. Transacetalisation de triols a partir du dimetroxymethane selectivite et applications synthetiques/ J-L. Gras, R. Nouguier, M. Mchich// Tetrahedron Letters. – 1987. – V. 28. – No. 52. – P. 6601-6604.
- 90.Linden, G. Preparation of 2- and 5-Substituted-1,3-dioxanes/ G.B. Linden, M.H. Gold// J. Org. Chem. 1956. V. 21. P. 1175-1176.
- 91.Katorov, D. Synthesis of heterocyclic geminal nitro azides/ D.V. Katorov, G.F. Rudakov, and V.F. Zhilin// Russian Chemical Bulletin, International Edition. – 2009. – V. 58. – P. 2311-2317.
- 92.Katorov, D. Synthesis of 1,2,3-triazoles from heterocyclic α-nitro azides/ D.V. Katorov, G.F. Rudakov, I.N. Katorova, A.V. Yakushkov, D.P. Simonov, and V.F. Zhilin// Russian Chemical Bulletin, International Edition. – 2012. – V. 61. – P. 2114-2123.
- 93.Fletcher, J. Monosubstituted 1,2,3-triazoles from two-step one-pot deprotection/click additions of trimethylsilylacetylene/ J.T.Fletcher, S.E.Walz, M.E.Keeney // Tetrahedron Letters. – 2008. – V. 49. – P.7030-7032.
- 94.Каторов, Д.В. Гетероциклические α-нитроазиды и 1,2,3-триазолы на их основе: дис. на соискание ученой степени кандидата химических наук: 05.17.07/ Каторов Дмитрий Владимирович. – М., 2012. – 155 с.
- 95.Rostovtsev, V. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes/ V.V. Rostovtsev,

L.G. Green, V.V. Fokin, and K.B.Sharpless// Angew. Chem. Int. Ed. – 2002. – V. 41. – P. 2596-2599.

- 96.Kupper R.J., Jachimowicz F., Quirk J.M., Hakansson C.L. Novel Process for the preparation of bronopol. Patent US, no. 4,851,588, 1989.
- 97.J.I. Bardagi, V.A. Vaillard, and R.A. Rossi, *Encyclopedia of Radicals in Chemistry, Biologgy and Materials*, Online, 2012 John Willey & Sons, Ltd.
- 98.Chavez, D. Synthesis of an Energetic Nitrate Ester/ D.E. Chavez, M.A. Hiskey, D.L. Naud, and D. Parrish// Angew. Chem. Int. Ed. – 2008. – V. 47. – P. 8307-8309.
- 99.Kucialk, R. Synthesis of Branched-Chain Azafuranose Derivatives from Secondary Nitroalkanes. Facile Synthesis of (±) 4-Amino-4,4bis(hydroxymethyl)-4-deoxythreonic-1,4-lactam/ R. Kucialk and W. Sas// Tetrahedron Letters. – 1994. –V. 35. –P. 8647-8648.
- Budzinska, A. Asymmetric synthesis of a branched-chain analogue of azapyranoses from a 5-allylic derivative of 5-nitro-1,3-dioxane. Synthesis of (3*R*,4*S*)-6,6-bis(hydroxymethyl)-3,4-dihydroxypiperidin-2-one/ A. Budzinska and W. Sas// Tetrahedron Letters. 2001. –V. 42. –P. 105-107.
- Beugelmans, R. Substitution nucleophile radicalaire en chaine (SRN1).
 16ème memoire: N-alcoylation de l'imidazole, du benzimidazole, du pyrrazole du triazole/ R. Beugelmans, A. Lechevallier, D. Kiffer, P. Maillos// Tetrahedron Letters. 1986. V. 27. No. 51. P. 6209-6212.
- 102. Efimova, Yu. Tetrazoles: Alkylation of 5-Aryltetrazoles under Microwave Activation/ Yu. Efimova, T.V. Artamonova, G.I. Koldobskii// Russian Journal of Organic Chemistry. – 2009. – V. 45. – No. 5. – P. 725–727.
- Spear, R. Positional Selectivity of the Methylation of 5-Substituted Tetrazolate Anions/ R.J. Spear // Aust. J. Chem. – 1984. – V. 37. – P. 2453–2468.
- 104. Rudakov, G. Synthesis of substituted 6-(1*H*-1,2,3-triazol-1-yl)-4,7-dihydro-1,3,5-dioxazepine/ G.F. Rudakov, M.V. Dubovis, A.S. Kulagin, K.V. Tsarkova, A.S. Goloveshkin, V.F. Zhilin// Chemistry of Heterocyclic Compounds. 2015. V. 50. No. 11. P. 1634-1646.

- Winstead, M. Derivatives of Some Nitroalkanes/ M.B.Winstead, R.G. Strachan, and H.W. Heine// J. Org. Chem. – 1961. – V.26. – P. 4116-4118.
- 106. Axenrod, T. Synthesis and Characterization of 5-Substituted 1,3-Diazacyclohexane Derivatives/ T. Axenrod, J. Sun, K.K. Das, P.R. Dave, F. Forohar, M. Kaselj, N.J. Trivedi, R.D. Gilardi and J.L. Flippen-Anderson// J. Org. Chem. –2000. –V. 65. – P.1200-1206.
- 107. Sencus, M. The Preparation of Some Hexahydropymimidines from Nitroparafins/ M. Senkus// J. Amer. Chem. Soc. – 1946. –V. 68. – P. 1611-1613.
- 108. Новиков, С.С. Химия алифатических и алициклических нитросоединений/ С.С. Новиков, Г.А. Швехгеймер, В.В. Севостьянова, В.А. Шляпочников – Москва: Химия, 1974. – с. 416.
- 109. Urbanski, T. Primary Nitro compounds as a Source of Heterocyclic Systems/ T. Urbanski// Synthesis. 1974. P. 613-632.
- 110. Kamienski, B. Reaction of nitroparaffins with formaldehyde and ammonia/
 B. Kamienski, T. Urbanski and Y. Witanowski// Tetrahedron Letters. 1970. –
 V. 6. P. 451-452.
- Shakirov, R. Reaction of γ-nitroketones and methyl 4-nitrobutanoates with formaldehyde and primary amines/ R.R. Shakirov, L.I. Vlasova, D.V. Shishkin, N.N. Yarmukhamedov, N.Z. Baybulatova, D.G. Semesko, V.A. Dokichev, and Yu.V. Tomilov// Russian Chemical Bulletin, International Edition. 2005. V. 54. No. 7. P. 1737-1743.
- Cichra, D. Nitrolysis of Dialkyl *tert*-Butylamines/ D.A. Cichra and H.G. Adolph// J.Org.Chem. 1982. V. 47. P. 2474-2476.
- 113. Shakirov, R. Methyl nitroacetate and 3-nitropropionate in the synthesis of hexahydropyrimidines and piperidines/ R.R. Shakirov, T.V. Dokichev, R.Z. Biglova, N.M. Vlasova, N.Z. Baibulatova, and R.F. Talipov// Chemistry of Heterocyclic Compounds. – 2008. – V. 44. – No. 1. – P. 43-49.
- Archibald, T. Synthesis and X-ray Crystal Structure of 1,3,3-Trinitroazetidine/ T.G. Archibald, R. Gilardi, K. Baum, and C. George// J. Org. Chem. – 1990. – V. 55. – P.2920-2924.

- 115. Katritzky, A. Novel synthesis of 1,3,3-Trinitroazetidine/ A.R. Katritzky,
 D.J. Cundy and J. Chen// J. Heterocyclic Chem. 1994. V. 31. P. 271-275.
- Axenrod, T. Synthesis of 1,3,3-Trinitroazetidine/ T. Axenrod, C. Watnick and H. Yazdekhasti// Tetrahedron Letters. – 1993. – V. 34. –P. 6677-6680.
- 117. Marchand, A. A Novel Approach to the Synthesis of 1,3,3-Trinitroazetidine/ A.P. Marchand, D. Rajagopal, and S.G. Bott// J. Org. Chem. – 1995. – V. 60. – P4943-4946.
- 118. Dubovis, M. A new method of synthesis of substituted 1-(1*H*-imidazole-4-yl)-1*H*-1,2,3-triazoles and their fungicidal activity/ M.V. Dubovis, G.F. Rudakov, A.S. Kulagin, K.V. Tsarkova, S.V. Popkov, A.S. Goloveshkin, G.V. Cherkaev// Tetrahedron. 2018. V. 74. P. 672-683.
- 119. Rodios, N. Synthesis and mass spectra of 1-arylideneamino-1,2,3-triazoles/
 N.A. Rodios and S.G. Adamopoulos// J. Het. Chem. 1987. V. 24. P. 14611466.
- Higgins, R. Conformation analysis of Azetidines-Evidence of a Non-planar ring (1a)/ R.H. Higgins, N.H. Cromwell and W.W. Paudler// J. Het. Chem. – 1971. – V. 8. – P. 961-966.
- Polak, M. Synthesis of β-(N-1,2,3-triazolyl)-substituted α,β-unsaturated α-amino acid derivatives. A new example of 1*H* to 2*H*-1,2,3-triazole isomerisation/
 M. Polak and B. Vercek// Synth. Commun. 2000. V. 30. P. 2863-2871.
- 122. Hassner, A. Utility of a Polymeric Azide Reagent in the Formation of Diand Triazidomethane. Their NMR Spectra and the X-ray Structure of Derived Triazoles/ A. Hassner, M. Stern, and H.E. Gottlieb// J. Org.Chem. – 1990. – V. 55. – P. 2304-2306.
- 123. Magnus, P. Hypervalent Iodine Chemistry: New Oxidation Reactions Using the Iodosylbenzene-Trimethylsilyl Azide Reagent Combination. Direct αand β-Azido Functionalization of Triisopropylsilyl Enol Ethers/ P. Magnus, J. Lacour, P.A. Evans, M.B. Roe, C. Hulme// J. Amer. Chem. Soc. – 1996. – V. 118. – P. 3406-3418.

- 124. Niedermann, K. A Ritter-Type Reaction: Direct Electrophilic Trifluoromethylation at Nitrogen Atoms Using Hypervalent Iodine Reagents/ K. Niedermann, N. Fruh, E. Vinogradova, M.S. Wiehn, A. Moreno, and A. Togni// Angew. Chem. Int. Ed. – 2011. – V. 50. – P. 1059-1063.
- 125. Martin, P. The Synthesis of 1,4-Substituted Imidazoles/ P.K. Martin, H.R. Matthews, H. Rapoport, and G. Thyagarajan// J. Org. Chem. 1968. V. 33. P. 3758-3761.
- Bordwell, F. Equilibrium Acidities in Dimethyl Sulfoxide Solution/ F. Bordwell// Acc. Chem. Res. – 1988. – V. 21. – P. 456-463.
- 127. Vasiliu, M. Computational Studies of the Properties of Azole.xBH₃ Adducts for Chemical Hydrogen Storage Systems/ M. Vasiliu, A.J. Arduengo, and D.A. Dixon// The Journal of Physical Chemistry. –2012. – V. 116. – P. 22196-22211.
- 128. Elguero, J. ¹H and ¹³C NMR Study of the Structure of Pyrazoles, Imidazoles and their Benzo derivatives in Sulphuric Acid (Azolium Cations)/ J. Elguero, M.L. Jimeno and G.I. Yranzo// Magn. Reson. Chem. – 1990. – V. 28. – P. 807-811.
- 129. Boren B.C., Busch B.B., Gu H-H., Jammalamadaka V., Lu S-P., Martin R., Mohan R., Schweiger E., Stevens. LXR and FXR modulators. International Publication NumberWO 2008/073825 Al.
- 130. Brown W.D., Larsen J.S., Teuber L., Brown D.T., Ahring P.K., Mirza N., Nielsen E. Imidazole derivatives and their use for modulating the GABA_A receptor complex. International Publication NumberWO 2007/042544 A2.
- 131. Van Niel M.B., Ray N.Ch., Alcaraz L., Panchal T.A. Jennings A.S.R., Armani E., Cridland A.P., Hurley Ch. Kinase inhibitors. Patent US, no. US 2013/0150343 A1.
- 132. Chan T., Guckian K., Jenkins T., Thomas J., Vessels J., Kumaravel G., Meissner R., Lyssikatos J., Lucas B., Leaf I. Irak4 inhibiting agents. International Publication Number WO 2016/011390 Al.

- Lucas-Hourani, M. Original 2-(3-Alkoxy-1*H*-pyrazol-1-yl)azines Inhibitors of Human Dihydroorotate Dehydrogenase (DHODH)/ M. Lucas-Hourani, H. Munier-Lehmann, ElF. Mazouni, N.A. Malmquist, J. Harpon, E.P. Coutant, S. Guillou, O. Helynck, A. Noel, A. Scherf, M.A. Phillips, F. Tangy, P-O. Vidalain, Y. L. Janin// J. Med. Chem. – 2015. – V. 58. – P. 5579–5598.
- Wang Sh., Zhao Y., Zhau B., Aguilar A. 9*H*-Pyrimido [4,5-B] indoles as bet bromodomain inhibitors. International Publication Number WO 2016/138332 Al.
- Cristau, H-J. Mild conditions for copper-catalysed N-Arylation of Pyrazoles/ H-J. Cristau, P.C. Pascal, J-F. Spindler, M. Taillefer// Eur. J. Org. Chem. – 2004. – P. 695-709.
- 136. Kitamura Sh., Aicher T.D., Gonzales S., Le Huerou Y., Pratt S.A., NakadaY. Amide Compounds. International Publication Number WO 2008/011130 A2.
- 137. Badescu V.O., Camp A.M., Clark B.P., Cohen M.P., Filla S.A., Gallagher P.T., Hellman S.L., Mazanetz M. 2-[4-(pyrazol-ylalkyl)piperazin-I-yl]-S-phenyl pyrazines and pyridines and 3-[4-(pyrazol-4-ylalkyl)piperazin-l-yl]-2-phenyl pyridines as 5-HT₇ receptor antagonists. International Publication Number WO 2008/141020 Al.
- 138. Beliaev, N. Design and synthesis of imidazoles linearly connected to carbocyclic and heterocyclic rings via a 1,2,3-triazole linker. Reactivity of βazolyl enamines towards heteroaromatic azides/ N. Beliaev, M. Shafikov, I. Efimov, T. Beryozkina, G. Lubec, W. Dehaen, V.A. Bakulev// New J. of Chem. – 2018. – V. 3. – P. 31-42.
- Gonell, S. A Y-Shaped Tris-N-Heterocyclic Carbene for the Synthesis of Simultaneously Chelate-Monodentate Dipalladium Complexes/ S. Gonell, M. Poyatos, J.A. Mata, E. Peris// Organometallics. – 2011. – V. 30. – P. 5985–5990.
- 140. Turks, M. 1,2,3-Triazoles as leaving groups in purine chemistry: a threestep synthesis of N⁶-substituted-2-triazolyl-adenine nucleosides and photophysical properties thereof/ A. Kovaļovs, I. Novosjolova, Ērika Bizdēna, I.

Bižāne, L. Skardziute, K. Kazlauskas, S. Jursenas, Maris Turks// Tetrahedron Letters. – 2013. – V. 54. – P. 850-853.

- 141. Barluenga, J. Modular Synthesis of Indoles from Imines and *o*-Dihaloarenes/ J. Barluenga, A. Jimenez-Aquino, F. Aznar, and C. Valdes// J. Amer. Chem. Soc. 2009. V.131. P. 4031–4041.
- 142. Dalinger, I. Synthesis of 4-(N-azolyl)-3,5-dinitropyrazoles/ I.L. Dalinger,
 I.A.Vatsadze, T.K.Shkineva, G.P.Popova, S.A. Shevelev// Mendeleev Commun.
 2010. V. 20. P. 355–356.
- 143. Larina, L.Nitroazoles: Synthesis, Structure and Applications/ L. Larina, V. Lopyrev// Topics in Applied Chemistry Springer Science & Business Media. 2009. P. 441.
- Kanishchev, M. Nitropyrazoles (review)/ M.I. Kanishchev, N.V. Korneeva,
 S.A. Shevelev, A.A. Fainzil'berg// Plenum Publishing Corp. 1988. P. 353– 370.
- 145. Зайцев, А. Динитропиразолы/ А.А. Зайцев, И.Л. Далингер, С.А. Шевелев // Успехи химии. 2009. Т. 78. № 7. С. 643–682.
- 146. Шкинева, Т. Синтез 4,4'-динитро-1H,1'H-3,3'-бипиразолил-5,5'диамина/ Т.К. Шкинева, А.В. Корманов, В.Н. Болдинова, И.А. Вацадзе, И.Л. Далингер// Химия гетероциклических соединений. – 2018. – Т. 54. – № 7. – С. 703–709.
- 147. Dalinger, I. Pyrazole–Tetrazole Hybrid with Trinitromethyl, Fluorodinitromethyl, or (Difluoroamino)dinitromethyl Groups: High-Performance Energetic Materials/ I.L. Dalinger, A.V. Kormanov, K.Yu. Suponitsky, N.V. Muravyev, A.B. Sheremetev// Chem. Asian J. – 2018. – V. 1. – P. 1–9.
- 148. Dalinger, I. Bipyrazole bearing ten nitro groups a novel highly dense oxidizer for forward – looking rocket propulsions/ I.L. Dalinger, K.Yu. Suponitsky, T.K. Shkineva, D.B. Lempert, A.B. Sheremetev// J. Mater. Chem. A. – 2018. – V. 6. – P. 14780–14786.

- 149. Kazakov, A. Pyrazolyltetrazoles a High-Enthalpy Backbone for Designing High-Energy Compounds: An Experimental Study of the Enthalpy of Formation/ A.I. Kazakov, L.S. Kurochkina, A.V. Nabatova, D.B.Lempert, I.L. Dalinger, A.V. Kormanov, O.V. Serushkina, A.B. Sheremetev// Doklady Physical Chemistry. – 2018. – V. 478. – №1. – P. 15–18.
- 150. Lempert, D. Energetic abilities of nitro derivatives of isomeric (pyrazol-3yl)tetrazoles as components of solid composite propellants/ D.B. Lempert, A.I. Kazakov, S.I. Soglasnova, I.L. Dalinger, A.B. Sheremetev// Russ. Chem. Bull., Int. Ed. – 2018. – V. 67. – № 9. – P. 1580–1588.
- 151. Хмельницкий Л.И. Справочник по взрывчатым веществам. Часть 2.
 М.: Военная Ордена Ленина и Ордена Суворова Артиллерийская Инженерная Академия имени Ф.Э. Дзержинского. -1962. 842 с. Библиогр.: с. 184.
- 152. Artico, M. Antifungal Agents. 9. 3-Aryl-4-[α-(1*H*-imidazol-l-yl)arylmethyl]pyrroles: A New Class of Potent Anti-Candida Agents/ M. Artico, R. Di Santo, R. Costi, S. Massa, A. Retico, M. Artico, G. Apuzzo, G. Simonetti, and V. Strippolis// J. Med. Chem. 1995. V. 38. P. 4223-4233.
- 153. Dalvie, D. Biotransformation Reactions of Five-Membered Aromatic Heterocyclic Rings/ D.K. Dalvie, A.S. Kalgutkar, S.C. Khojasteh-Bakht, R. Scott Obach, and J.P. O'Donnell// Chem. Res. Toxicol. – 2002. – V. 15. – P. 269-299.
- 154. Krolenko, K. Synthesis and antimicrobial activity of 5-(1*H*-1,2,3-triazol-4yl)-1,2,4-oxadiazole derivatives/ K.Yu. Krolenko, S.V. Vlasov, I.A. Zhuravel// Chemistry of Heterocyclic Compounds. –2016. – V.52 (10). – P. 823–830.
- Asai, K. Formation of Azole-Resistant Candida albicans by Mutation of Sterol 14-Demethylase P450/ K. Asai, N. Tsuchimori, K. Okonogi, J.R. Perfect, O. Ogotoh and Y. Yoshida// Antimicrob. Agents Chemother. – 1999. – V. 43. – P. 1163-1169.
- 156. Методические рекомендации по определению фунгицидной активности новых соединений. Methodological Recommendations for

Estimation of the Fungicidal Activities of Novel Compounds. Черкассы: НИИТЭХИМ. 1984. 32с.

- 157. Дубовис М.В., Рудаков Г.Ф., Кулагин А.С., Царькова К.В., Попков С.В., Жилин В.Ф. Замещенные 1-(1-*трет*-бутил-1*H*-имидазол-4-ил)-1*H*-1,2,3-триазолы, способ их получения и фунгицидная композиция на их основе. Номер патента RU 2591206 C1, дата публикации 20.07.2016.
- Coelho, A. Indexing of powder diffraction patterns by iterativeuse of singular value decomposition/ A.A. Coelho// Journal of Applied Crystallography. - 2003. - V. 36. - P. 86-95.
- 159. Bruker, TOPAS 5.0 User Manual, Bruker AXS GmbH, Karlsruhe, Germany, 2014.
- Laikov, D. A new class of atomic basis functions for accurate electronicstructure calculations of molecules/ D.N. Laikov// Chemical Physics Letters. – 2005. – V. 416. – P. 116–120.
- Laikov, D. Fast evaluation of density functional exchange-correlation termsusing the expansion of the electron density in auxiliary basis sets/ D.N. Laikov// Chemical Physics Letters. – 1997. – V.281. – P. 151–156.
- 162. Favre-Nicolin, V. FOX, 'free objects for crystallography': a modular approach to ab initio structure determination from powder diffraction/ V. Favre-Nicolin and Radovan Černy// Journal of Applied Crystallography. – 2002. – V. 35. – P. 734-743.
- 163. Bushmarinov, I. Rietveld refinement and structure verification using 'Morse' restraints/ I.S. Bushmarinov, A.O. Dmitrienko, A.A. Korlyukov and M.Yu. Antipin// Journal of Applied Crystallography. – 2012. – V. 45. – P. 1187-1197.
- 164. Dmitrienko, A. Reliable structural data from Rietveld refinementsvia restraint consistency/ A.O. Dmitrienko and I.S. Bushmarinov// Journal of Applied Crystallography. – 2015. – V. 48. – P. 1777-1784.
- Pozharskii, A. Heteroaromaticity/ A.F. Pozharskii// Chem. Heterocyclic Compd. (Engl. TransL). –1985. – V.21. – P.717-749.

- Schmidt, E. Uber einige Derivate des Trimethylenglykols/ E. Schmidt und
 R. Wilkendorf// Chem. Ber. 1919. V. 52. P. 389-399.
- 167. Majewski, M. 1,3-Dioxan-5-ones: synthesis deprotonation, and reactions of their lithium enolates/ M. Majewski, D.M. Gleave, and P. Nowak// Can. J. Chem. – 1995. – V. 73. – P. 1616-1626.
- 168. Kleinpeter, E. Zur konformativen Anordnung dipolarer Substituenten in 5-Stellung von 1,3-Dioxanen/ E. Kleinpeter, C-P. Maschmeier und H. Matschiner// Monatshefte f
 ür Chemie. – 1989. – V. 120. – P. 725-733.
- 169. Li, X. An Alkene-Forming Cascade Reaction En Route to 2,2'-Bi(glycerol)/ X. Li, P.D. Livant, J. Chen// Synlett. – 2018. – V. 29. – P. 1769-1772.
- 170. McKenney, R. Synthesis and thermal properties of 1,3-dinitro-3-(1',3'-dinitroazetidin-3'-yl)azetidine (TNDAZ) and its admixtures with 1,3,3-trinitroazetidine (TNAZ)/ R. L. McKenney Jr., T.G. Floyd, W.E. Stevens//Journal of Energetic Materials. 1998. V. 16. P.1-22.