ОТЗЫВ ОФИЦИАЛЬНОГО ОППОНЕНТА

на диссертационную работу Аунг Чжо Мо на тему:

"Композиционная керамика на основе электроплавленого корунда с эвтектическими добавками в системах Al_2O_3 — TiO_2 —MnO, Al_2O_3 —MgO—MnO, Al_2O_3 —MgO— SiO_2 , Al_2O_3 — SiO_2 — TiO_2 ", представленную на соискание ученой степени кандидата технических наук по специальности 05.17.11 — Технология силикатных и тугоплавких неметаллических материалов

На отзыв представлена диссертация объемом 113 страниц машинописного текста, содержащая 29 рисунков, 16 таблиц, список литературы из 100 наименований, и автореферат.

Актуальность работы

Корундовая композиционная керамика благодаря комплексу уникальных свойств (механических, термических, электрофизических) имеет огромное значение для современной техники и технологии. Использование для ее получения высокочистого электроплавленого корунда (ЭПК), с одной стороны, существенно упрощает технологию подготовки шихты, но, с другой стороны, усложняет процесс спекания сформованного изделия. В связи с этим, работа, связанная с выявлением оптимальных условий получения качественной корундовой продукции в условиях минимально возможных температур и длительности обжига, является своевременной.

Вышеизложенное свидетельствует об актуальности выполненного исследования с точки зрения выбора объектов и использованных методов, то есть работа в этом отношении соответствует требованиям к диссертациям, представленным на со-искание ученой степени.

Целью данного исследования являлось исследование процессов уплотнения до высокой плотности, фазообразования, формирования микроструктуры и упрочнения композитов на основе электроплавленого корунда с применением в качестве добавки, обеспечивающих спекание по жидкофазному механизму, субмикронных порошков эвтектических составов оксидных систем Al_2O_3 – TiO_2 –MnO, Al_2O_3 –MgO–MnO, Al_2O_3 –MgO– SiO_2 , Al_2O_3 – SiO_2 – TiO_2 , а также ZrO_2 – Y_2O_3 .

Диссертантом успешно выполнены поставленные в работе задачи, связанные с подбором оптимальных составов рабочих шихт и изучением влияния различных факторов на физико-механические свойства и микроструктуру синтезируемых корундовых композиционных материалов.

Научная новизна работы

Установлено, что характер изменения усадки и пористости композитов в зависимости от температуры обжига определяется составом эвтектической добавки сложной оксидной системы, количеством добавки и температурой образования расплава.

Показано, что при использовании эвтектической добавки в системе Al_2O_3 — TiO_2 —MnO при обжиге в интервале температур 1450–1550°C наблюдается равномерное уплотнение композита во всем изученном диапазоне вводимой добавки.

Выявлено, что микроструктура получаемых композитов имеет ламеллярное строение; вокруг зерен корунда локализованы субмикронные равноосные включения закристаллизованных фаз, образующие непрерывный каркас.

Теоретическая значимость работы заключается в получении новых знаний по синтезу корундовой композиционной керамики.

Практическая значимость работы

Разработана простая технология плотных композиционных керамических материалов на основе электроплавленого корунда с температурой спекания 1550°С с использованием различных эвтектических добавок оксидного состава. Предложенная технология позволяет получить изделия с пористостью менее 1%, прочностью при изгибе до 330—420 МПа и высокой твердостью. Получаемые композиты могут быть рекомендованы для применения в качестве износостойких изделий, деталей для электронной техники, элементов бронезащиты.

Достоверность полученных результатов подтверждается применением современных инструментальных методов (сканирующая электронная микроскопия, рентгенофазовый анализ) и стандартных испытаний, соответствующих поставленным целям и задачам. Противоречия сформулированных положений с современными концепциями химии твердого тела и технологии керамики отсутствуют. Подтверждением достоверности может служить публикация статей в рецензируемых журналах, а также представление результатов на конференциях различного уровня.

Общая характеристика диссертационной работы

Работа Аунг Чжо Мо состоит из введения, 7 глав, общих выводов и списка литературы.

В литературном обзоре (глава 1) автор подобрал и проанализировал источники, в которых рассмотрены особенности, структура и свойства корундовой керамики. Проанализировано влияние добавок на спекание и характеристики композитов на основе корунда.

Исходные материалы, методики синтеза и исследования свойств описаны в главе 2.

В главах 3-5 изложены результаты исследования композиционной керамики на основе электроплавленого корунда с эвтектической добавкой состава Al_2O_3 — TiO_2 —MnO (глава 3), Al_2O_3 —MgO—MnO (глава 4), Al_2O_3 —MgO—SiO₂ и Al_2O_3 —SiO₂— TiO_2 (глава 5). Установлены оптимальные вещественный и гранулометрический состав шихт и температуры обжига, позволяющие получить качественные материалы с минимальной пористостью и высокой прочностью и плотностью.

Глава 6 посвящена структурно-механическим свойствам композиционного материала, содержащего электроплавленый корунд и стабилизированный диоксид циркония, модифицированного эвтектической добавкой состава Al_2O_3 — TiO_2 —MnO. Изучено влияние концентрации наночастиц диоксида циркония, а также плакирования порошка электрокорунда эвтектическим расплавом на некоторые свойства по-

лучаемых спеченных образцов. Получаемые образцы отличались более высокими значениями плотности, твердости и более низкой пористостью по сравнению с образцами из электроплавленого корунда и эвтектической добавки. При этом формировалась специфическая структура материала по типу "композит в композите".

Заключительная 7 глава содержит обсуждение результатов исследований и рекомендации по применению полученных керамических композиционных материалов.

Минимальная пористость композитов достигнута при температуре обжига 1550° С и составляет 0.2-0.5 % при плотности 3.87-3.89 г/см³; прочность при изгибе 200-300 МПа. Введение в состав композита частично стабилизированного диоксида циркония с одновременным вводом добавки состава Al_2O_3 — TiO_2 —MnO позволила повысить прочность до 400-420 МПа.

Таким образом, в диссертации получены результаты, имеющее существенное значение в области керамики. Представленные в диссертационной работе данные обладают новизной и являются оригинальными. Результаты соответствуют поставленной цели и задачам; тема диссертации соответствует заявленной специальности.

Работа Аунг Чжо Мо хорошо оформлена, содержит много фактического и иллюстративного материала. Автореферат полностью отражает содержание диссертации. По материалам диссертации опубликована 8 работ, в том числе 3 статьи в рецензируемых научных журналах и Scopus, включенных в перечень ВАК.

Основные положения диссертационной работы апробированы в выступлениях на научных симпозиумах и конференциях различного уровня.

Замечания по диссертационной работе:

- 1. Спорным является утверждение о том, что в октаэдрической структуре Al_2O_3 можно выделить группировки Al_2O_3 (с. 17). Тем более, что автор в том же абзаце пишет, что основным структурным мотивом в оксиде алюминия служат алюмо-оксидные октаэдры. Общепринято мнение о кубической решетке γ -формы Al_2O_3 , однако рис. 1.5 этому не соответствует. В табл. 1.3 "Кристаллические структуры для переходного оксида алюминия" приведена α -форма, не относящаяся к переходным модификациям.
- 2. На с. 24 автор при перечислении физико-химические процессы, накладывающихся на спекание корундовой керамики, называет термическое разложение сырья. Вместе с тем, с учетом высокой температуры спекания корунда, скорее всего, все реакции термолиза сырья к этому времени закончатся.
- 3. Автором не обоснована длительность механоактивации смесей на основе электроплавленого корунда в планетарной мельнице (40 мин). Не очень понятна цель данной обработки: только измельчение компонентов (в первую очередь корунда) или повышение реакционной способности исходных веществ с учетом дальнейшей термообработки смеси при 1200 °C и дополнительного измельчения.
 - 4. Список литературы содержит лишь около 30 % источников, относящихся

к периоду с 2000 г. Остальные цитируемые работы являются более старыми, в том числе около 30 % относятся периоду до 1980 г. Имеются повторные ссылки (позиции 9 и 32). Библиографическое описание журнальных статей не унифицировано. В источниках №№ 29, 36, 40, 91 не указано название издательства; №№ 4 и 69 — не указан год издания журнала; № 6 — отсутствует год защиты диссертации.

5. Имеются неудачные выражения, ошибки в согласовании слов и опечатки в тесте. Вряд ли модификацию γ -Al₂O₃ стоит называть нестабильной (с.18). В своем температурном диапазоне данная форма является устойчивой. Неоднократно использован устаревший термин *окись*.

Вместе с тем, указанные замечания не влияют на общую положительную оценку работы. Диссертация Аунг Чжо Мо представляет собой завершенное и тщательно выполненное исследование, направленное на решение актуальной задачи.

Заключение по работе

Диссертационная работа Аунг Чжо Мо "Композиционная керамика на основе электроплавленого корунда с эвтектическими добавками в системах Al_2O_3 - TiO_2 -MnO, Al_2O_3 -MgO-MnO, Al_2O_3 -MgO-SiO₂, Al_2O_3 -SiO₂- TiO_2 " является научно-квалификационной работой, в которой изложены новые научно обоснованные решения, а значит, вносит значительный вклад в развитие методов и технологий керамических композиционных материалов.

Работа отвечает требованиям п. 9 "Положения о присуждении ученых степеней" (утверждено постановлением Правительства РФ № 842 от 24.09.2013 в ред. Постановления Правительства РФ от 21.04.2016 № 335), выдвигаемым к работам, представленным на соискание ученой степени кандидата технических наук.

Таким образом, диссертационная работа, представленная к защите Аунг Чжо Мо, имеет новизну и практическую значимость в части отдельных результатов исследования, а ее автор заслуживает присвоения ученой степени кандидата технических наук по специальностям 05.17.11 — Технология силикатных и тугоплавких неметаллических материалов.

Официальный оппонент:	Н.Ф. Косенко
Косенко Надежда Федоровна	
доктор технических наук по специа	льности
02.00.04 - физическая химия, техни	ческие науки, профессор;
профессор кафедры технологии кер	амики и наноматериалов ФГБОУ ВО
"Ивановский государственный химп	ико-технологический университет",
Адрес: 153000, г. Иваново, Шереме	гевский просп., 7
Тел.: 8(4932)30-73-46, д. 2-41. Факс	: 8(4932)30-18-14.
e-mail: httnism@isuct.ru, nfkosenko@	gmail.com
Веб-сайт: http://isuct.ru	
	CKO
Подпись официального оппонента	косенко Н.Ф. заверяю:
Ученый секретарь	А.А. Хомякова